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ABSTRACT 

The purpose of this paper is to present an all-optical EXOR for cryptographic application based on spatial soliton beams. 
The device is based on the propagation and interactions properties of spatial soliton in a Kerr nonlinear material. The 
interaction force between parallel soliton beam is analyzed from the analytical point of view and an exact solution is 
presented. 
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1. Introduction 

Spatial solitons are optical beams that propagate without 
changing their shape, thanks to the balance between 
nonlinear effect (self-focusing) and diffraction [1]. This 
balance effect has demonstrated to be stable in two-dim- 
ensional waveguides. 

Propagation and interaction properties of spatial sol- 
itons are extremely interesting and useful in order to al- 
low and realize all-optical devices, thanks to their ro- 
bustness to the external disturbs. A plenty of all-optical 
devices have been proposed, such as filter [2], multi- 
plexer and demultiplexer, arithmetic and logical unit [3, 
4], high velocity router [5]. 

In this paper an all-optical EXOR for cryptographic 
application is proposed. The device is based on two pe- 
culiar properties of spatial soliton: swing effect [6,7] and 
interaction between parallel soliton beams. 

Swing effect represents an oscillating behavior of 
soliton beams that propagate in a non-constant transver- 
sal refractive index [6]. It has been demonstrated that 
soliton oscillations depends on the intensity of the soliton 
itself and on the shape of the transversal refractive index. 

Another interesting property of spatial soliton is re- 
presented by the interaction force between two parallel 
propagating soliton due to the non-linear effects of the 
material. This force is an exponential function of the 
relative distance between solitons and a sinusoidal func- 
tion of their relative phase [8,9]. 

Unfortunately, nothing can be said about the coeffi- 
cients necessary to derive this force in an analytical way.  

Nevertheless an empirical method has been recently 
proposed [9] to derive a proper equation that could quan- 
tify the interaction force necessary to design all-optical 
devices. 

Thanks to the numerical solution of this empirical for-
mula it has been possible to propose different all-optical 
devices [5,9,10] whose correct behavior has been con- 
firmed by numerical simulations. In the present paper 
this empirical formula is used and a proper analytical 
solution has been found. 

The proposed device can be used in cryptographic ap- 
plication since it represents a stream cipher that can be 
exploited either in ciphering or deciphering phase. The 
ciphered message is obtained by sending the message to 
be ciphered as a string of bits to the input to the device, 
together with the key string. The same key string can be 
used, on the same device in the receiving phase, together 
with the ciphered string, to obtain the original message 
(plaintext). Soliton beams represent the information me- 
dium and the processing activities (EXOR) is obtained 
thanks to the properties of soliton propagation and inter- 
action. 

The great advantage of the proposed device is repress- 
ented by the operative velocity that is limited, from the 
theoretical point of view, only by the response time of 
the used material. 
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2. Structure of the Device 

The device is composed by two inputs and one output, 
since it has to execute a logical EXOR operation. The 
complete scheme is shown in Figure 1. 

It is composed by two input waveguides, a main wa- 
veguide, two drain waveguides and two parabolic wa- 
veguides. The waveguides are characterized by different 
geometries and different transversal refractive index pro- 
files: main waveguide is chosen to have a constant tr- 
ansversal refractive index profile whereas input wave- 
guides and parabolic waveguides are characterized by a 
triangular transversal refractive index profile. 

The two inputs are labeled with letters A and B. If the 
device must be integrated, two proper laser diodes can be 
used to generate input pulses whose intensity is capable 
of generating spatial solitons in the material. 

Input A is used to send the bit related to the message 
to be ciphered whereas input B is used to send the bit 
related to the cryptographic key. For simplicity, the two 
input pulses are supposed to be characterized by the same 
phase, without any loss of generality. 

In the following it is illustrated how the proposed devi- 
ce performs the EXOR logical operation. 

Since we deal with a passive device, if the two inputs  

are equal to a logical zero (no input pulses are present), 
the output is equal to zero. 

If input A is equal to a logical 1 (a pulse is present) 
and input B is equal to a logical 0 (no pulse is present), 
the pulse A generates a soliton that propagates in the 
input waveguide 1 following an oscillating path due to 
inclination and to the triangular transversal refractive 
index profile of waveguide 1 [2]. It enters the main wa- 
veguide with a certain transversal velocity (inclination) 
where it follows a linear trajectory, due to the absence of 
transversal refractive index profile, reaching the input of 
parabolic waveguide 2. Then it propagates inside this last 
waveguide, reaching the output of the device. The prop- 
erties of input waveguides and parabolic waveguides are 
illustrated in the following. At the moment, it is suffi- 
cient to know that, if the geometry and the transversal 
refractive index profile are correctly designed, the soliton 
beam is capable of reaching the output, performing an 
EXOR operation. 

If input A is equal to a logical 0 (no pulse is present) 
and input B is equal to a logical 1 (a pulse is present), 
pulse B generates a soliton that propagates in the input 
waveguide 2 following an oscillating path due to inclina- 
tion and to the triangular transversal refractive index pro- 
file of waveguide 2. The situation is similar to the previ- 

 

 

Figure 1. Scheme of the device.  
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ous one with the difference that the dissimilar inclination 
of waveguide 2, with respect to waveguide 1, induces a 
different phase variation on soliton B, with respect to 
soliton A, when it enters the main waveguide, This phase 
variations is properly controlled in the design phase, 
thanks to the different inclination of the input wave- 
guides, to allow a controlled interaction when two soliton 
beams are present, at the same time, in the main wa- 
veguide. This controlled interaction is illustrated in the 
following and allows to reaching the desired goal. After 
propagation in input waveguide 2, the soliton enters the 
main waveguide with a certain transversal velocity (in- 
clination) where it follows a linear trajectory, due to the 
absence of transversal refractive index profile, reaching 
the input of parabolic waveguide 1 where it propagates 
reaching, at the end of propagation, the output of the de- 
vice. 

The last situation verifies when both inputs are equal 
to a logical 1. In this case solitons A and B propagates 
inside the related input waveguides, reaching the main 
waveguide with a converging trajectory. When they start 
to approach, they can experience an interaction force, 
and therefore acceleration, that can be attractive or repul- 
sive. It is well known [8,9] that they attract if their rela- 
tive phase is variable between 0 and π/2 and they repulse 
if their relative phase is variable between 3π/2 and 2π. If 
the geometry of input waveguides is designed on purpose, 
the two solitons experience a proper repulsive behavior 
that pushes them towards the inputs of lateral drain 
waveguides, where they are expelled by the device, 
without reaching the output. In this case a logical 0 in 
present at the output. 

In this way it has been shown, from the qualitative 
point of view, the EXOR performance of the proposed 
device. 

It has been said that soliton A could reach the output 
with a different relative phase with respect to soliton B. 
Since a cryptographic device is considered, this different 
phase between the two solitons could be detected by an 
eavesdropper in order to acquire significant information 
about the ciphering device, breaking its security. For this 
reason properly designed parabolic waveguides are used. 
These waveguides are characterized by different lengths 
so that solitons that propagate inside them are character- 
ized by the same phase when they reach their end, being 
undistinguishable when they approach the output. 

It is now necessary to describe the device from the 
quantitative point of view. 

3. Study of the Interaction Force between  
Solitons 

To correctly design the device, it is necessary to know 
exactly what happens when two parallel and close soliton 
beam propagate, influencing each other as in the main  

waveguide of the device. It has already been said that 
they can experience a transversal attractive or repulsive 
force as a function of their relative phase. Until now it 
was not possible to have an analytical expression of this 
force. It is only possible to know that it is a cosinusoidal 
function of the relative phase and an exponential function 
of the relative distance [8,9]. 

In the present work an empirical formula [9] derived 
from Gordon theory and from numerical simulations is 
used to derive an analytical expression of the interaction 
force between parallel solitons. The derived formula al- 
lows to calculate the transversal acceleration as a func- 
tion of the relative phase and of the relative distance be- 
tween two parallel solitons. 

Let’s consider two soliton beams that propagate along 
Z direction. It is well known [11] that the expression of a 
fundamental soliton in a Kerr material is given by: 

  0
2

2 0

1
, exp sech

2

n iZ X
E X Z

a n a a 
  

   
   0



     (1) 

where n0 is the linear refractive index, n2 the nonlinear 
refractive index, β the wavenumber of the guided mode, 
X the transversal coordinate, Z the longitudinal coordi- 
nate and a0 a parameter that is a function of the transver- 
sal dimension of the beam. 

If we set βX = x, βZ = z, A 2 0n n Q , 01 a C   
and substitute in Equation (1) we obtain the normalized 
formula of the fundamental soliton, whose modulus is 
equal to: 

  sechQ x C Cx               (2) 

In Figure 2 the schematization of the considered situ- 
ation of interaction between parallel solitons is shown. 

Using this expression, the transversal acceleration bet- 
ween two parallel solitons, whose relative phase is equal 
to ϕ, is given by [9]: 

    
2 2

2

d
exp 2 cos

d 5 HHHW

x z C
x x z

z
  

    (3) 

that is valid under the condition x ≥ 2xHHHW . 
The parameter xHHHW (half height half width) repre- 

sents the distance from the center of the beam where the 
amplitude reduces to one half. It is possible to demon- 
strate that [9]: 

 1
log 2 3HHHWx

C
 

           (4) 

both HHHW

Since a dynamic analysis is used, the second derivative 
of x with respect to z is considered as a transversal acce- 
leration whereas the first derivative of x with respect to z 
is considered as a transversal velocity. 

x  and C are real positive. 

From this point of view, z is considered as a sort of  
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Figure 2. Schematization of the considered situation of in-
teraction between two parallel solitons. 
 
time variable. 

Equation (3) has already been used to design all-opti- 
cal device [9,10] even if from the numerical point of 
view. 

In the present work, a proper analytical solution of 
Equation (3) is derived and the obtained solution is used 
to design part of the device whose correct behavior is 
demonstrated by the numerical simulations. 

If we set  2 5cosc T   and 2 HHHWx k , Equa- 
tion (3) can be written as: 

  
2

2

d
exp

d

x
T C k x

z
 

           (5) 

Equation (5) represents a proper form of second order 
differential equation where the variable is represented by 
x.  

This equation can be transformed in a first order diff- 
erential equation since it is of the form  x f x  .  

We can therefore write: 

     
2

12

x
x f x F x c


    

        (6) 

where F(x) is a primitive function of f(x) and c1 a proper 
constant that depends of initial conditions. 

In our situation    expf x T k x   and therefore 
   expF x T C  C k x   . 
Substituting in Equation (6) and separating the varia- 

bles we have: 
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            (7) 

that is an integrable expression whose solution is: 
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the integration constants c1 and c2 depend on the initial 
conditions, represented by the relative velocity and rela- 
tive distance of the two solitons. 

In particular c1 and c2 represents the solution of the 
following system: 

  1 1
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0 tanh

2 2x c C c    

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                    (9) 
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It is evident that c1 must be real positive. 
The argument of logarithm is positive since we are int- 

erested in the situation where cos(ϕ) < 0 . 
Let’s analyze now Equation (8) to verify if it correctly 

represents the considered situation. Since we are inter- 
ested at repulsive interaction π/2 < ϕ < 3π/2, two differ- 
ent situations can verify: 

1) If the initial transversal velocity is equal to zero 
  0 0x   and if the initial distance is quite short, the 

two solitons start to detach under the effect of the repul- 
sive force. The more they detach and the more the trans- 
versal acceleration decreases, as demonstrated by the 
exponential term of Equation (3), until reaching a limit 
value equal to zero. If we set  in Equation (9) 
we obtain c2 = 0 and Equation (9) can be solved giving: 

 0 0x 

  1 2 exp
T

c C k
C

  0x
          (11) 

that is a real positive. 
A graphical example is shown in Figure 3 where coh- 

erent values for C, k, x0 e ϕ, without taking care of their 
physical meaning, have been used. The behavior of the 
obtained curve is coherent with what one could expect. 

2) If the initial velocity is negative (that is the two so- 
litons are characterized by a convergent trajectory, as in 
the situation considered in our device), the relative dis- 
tance decreases until the exponential term of Equation (8) 
becomes significant. In this situation the repulsive force 

 



    (8)  

Figure 3. x(z) vs z for C = 1, ϕ = π, x0 = k, v0 = 0. 
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decreases the approaching velocity until reducing it to 
zero and inverting it until reaching a value that is oppo- 
site with respect to the initial value. 

In this situation, it is necessary to impose that both vel- 
ocity and initial position are different from zero: in this 
case the system represented by Equations (9) and (10) is 
not solvable in an analytical way. It is possible to dem-
onstrate that the condition  implies c2 < 0. 
This is evident from Equation (9), since both C and c1 
must be real positive. 

 0 0x 

A graphical example is shown in Figure 4 where coh- 
erent values for C, k, x0 e ϕ without taking care of their 
physical meaning have been used. The behavior of ob- 
tained curve is coherent with what one could expect. 

The obtained analytical solution has been compared 
with the numerical result, confirming the correctness of 
the found theoretical solution found. 

4. Design of the Device 

4.1. Choice of the Material and Normalization  

After illustrating the theory necessary to understand the 
interaction of solitons in the main waveguide, it is possi- 
ble to start to design and dimension the device. 

We first design the device in normalized units and su- 
ccessively in real units. 

In the design all the physical restrictions are consi- 
dered. In this way the real device is immediately deriv- 
able from the normalized device. 

The used normalization has already been shown prev- 
iously. It is very useful since it allows to transform path 
difference of solitons directly into phase difference be- 
tween the two solitons. 

Given a certain material and a certain source chara- 
cterized by a given wavelength, the minimum value of 
intensity necessary to generate a fundamental soliton is 
[11]: 

 I 0
2 2
0 2

2
s

n
I

d n 


              (12) 

 

 

Figure 4. x(z) vs z for C = 1, ϕ = π, x0 = k, c2 = 5. 

where d0 is the spot size of the beam whereas all the other 
parameters have already been illustrated previously. 

It is also well known that the minimum value of inten-
sity  II

sI  necessary to generate a second order soliton is 
equal to twice  I

sI  [11]. 
It is also possible to express the intensity of the soliton 

as a function of the normalized amplitude C [2]: 

 

 
I 20

2

1

2log 2 3
s

n
I C

n



         (13) 

We choose, as material, a Schott Glass B270, whose 
optical parameters, at a wavelength λ0 = 620 nm, are n0 = 
1.53 and 20 2

2 3.4 10 m Wn    [12]. 
Further, we choose a spot size of laser beam equal to 

10 μm. 
Using Equation (12) it is possible to calculate the va- 

lues  I
sI  e  II

sI . 
Using Equation (13) it is possible to calculate the rela- 

ted values of  I
sI  e  II

sI  expressed in normalized am- 
plitude that are C(I) = 0.017 e C(II) = 0.034: the normalized 
amplitude of the soliton beams used in the device must 
be variable between these two values to be sure to gener- 
ate a fundamental soliton. 

We chose, for our design, C = 0.03. 
It is now possible, from Equation (4), to calculate the 

half height half maximum width, that is equal to: 

 1
log 2 3 43.8986HHHWx

C
  

      (14) 

It is now necessary to define the maximum variation 
Δn0 of the linear refractive index that characterizes the 
transversal index profile of input waveguides and para-
bolic waveguide. We choose, for our purpose, Δn0 = 10−2. 

For practical realization reasons, it is necessary both 
the input waveguides and parabolic waveguides to be 
characterized by the same value of Δn0. 

4.2. Design of Input Waveguides 

The two inputs waveguides are directly interfaced with 
input laser sources. They represent two oblique wave- 
guides, whose width is equal to 2b, characterized by dif- 
ferent longitudinal inclinations and by a transversal tri- 
angular refractive index profile, as shown in Figure 5. 

The input waveguides must be designed such that the 
solitons inside them exit: 

1) with a relative phase equal to π; 
2) equal and opposite transversal velocities directed 

towards the center of the main waveguide where they 
interact in a controlled way, repelling each other. 

The propagation of a soliton beam in such waveguide 
has already been studied [2]. It is possible to demonstrate 
that swing effect takes place inside the waveguide, so 
that the soliton propagates following an oscillating path,  
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Figure 5. Upper view of inclined input waveguides (a) and 
transversal view of the same waveguide together with a 
soliton beam, where position and transversal velocity of 
both waveguide and soliton are shown (b). 
 
if a proper lock-in condition is respected: 

02
Gv

C
n


                (15) 

where vG represents the tangent of the inclination angle α 
between the longitudinal axes and waveguide axes, as 
shown in Figure 5. 

Since C has already been defined, it imposes a restri- 
ction on vG. It is also necessary to remember that all the 
considered theory is valid under paraxial approximation  

that imposes a certain limit (8˚ - 10˚) to the longitudinal 
propagation inclination of solitons. 

Let xG be the position of the center of the waveguide. 
The local inclination of the waveguide with respect to z 
axes can be regarded as the relative transversal velocity 
between the waveguide itself and the soliton that propa- 
gates inside it: 

   d
tan

d
G

G

x z
v

z
 

           (16) 

It has been demonstrated that a soliton that propagates 
in a waveguide characterized by a triangular refractive 
index profile experience a transversal acceleration equal 
to [5,12]: 

202
T

n
a C

b




              (17) 

that remains constant until the soliton beam moves inside 
one of the lateral zone of the waveguide. 

At the beginning of propagation the soliton beam is 
positioned in the centre of the waveguide. Since the 
waveguide seems to move transversally with respect to 
the soliton, the soliton itself enters the constant accelera- 
tion zone of the waveguide where its velocity grows 
linearly with z. If the lock-in condition is respected, the 
soliton is capable of reaching the center of the waveguide, 
crossing it and reaching the other zone of the waveguide 
where the negative acceleration decreases its transversal 
velocity until stopping it, reversing again its trajectory. It 
is clear that, if the lock-in condition is respected, the 
soliton propagates inside the waveguide following an 
oscillating path. 

Let’s design now the waveguides. 
If C = 0.003 then xHHHM = 43.8986. Equation (17) is 

valid only if HHHM . To respect this last condition 
we choose b = 200. Since have chosen Δn0 = 10−2, from 
Equation (15) we can calculate the lock-in condition: 

b x

02 0.Gv C n   006
           (18) 

If vG1 e vG2 are, respectively, the inclination of the first 
and of the second waveguide with respect to z direction, 
we choose vG1 = 0.0025 e vG2 = 0.005. This choice satis- 
fies the paraxial approximation. As it is possible to see, 
we have chosen an inclination of the second waveguide 
equal to twice the inclination of the first waveguide: this 
greatly simplifies the design of the device, as it is shown 
in the following. 

We want now to describe the motion of the soliton ins- 
ide waveguide 1, where vG1 = 0.0025. 

First of all, we want to calculate the longitudinal dist- 
ance Z01 that the soliton must propagate before reaching 
the center of the waveguide. To calculate Z01 we have to 
impose that xB(z) = xG(z), that is: 
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_
2 1

1 01 01 01

21
55555.5

2
G

G T
T

v
v Z a Z Z

a
   

   (19) 

To reach a longitudinal distance Z01 the soliton has 
propagated along a parabolic path whose it is necessary 
to calculate the distance. Considering the first derivative 
of xB(z) with respect to z, we have:  

21
d d

2B T Tx a z x a z z  
  (20) 

and the elementary distance along the parabolic path with 
respect to x is equal to: 

2 2 2d d d d 1 Tl x z z a z    2

     (21) 

Integrating Equation (21) we have: 

01

01

2 2
01 0

d 1 d 55555.7869
Z

TL
L l a z z    

  (22) 

It is clear that it is necessary to design together the in-
put waveguides such that the path difference (and there-
fore the phase difference) of the two solitons that propa-
gate inside them can reach the desired value which in-
duces a repulsive action when the two solitons reach the 
center of the main waveguide. 

In a similar way, we have for input waveguide 2: 
_

2 2
2 02 02 02

21
111111.1

2
G

G T
T

v
v Z a Z Z

a
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   (23) 

02
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2 2
02 0

d 1 d 111112.9628
Z

TL
L l a z z    

  (24) 

Let Z0 = Z02 = 2Z01. After this longitudinal distance the 
soliton inside input waveguide 1 has made a complete 
oscillation, reaching again the center of the waveguide 
while the soliton inside waveguide 2 has made half os- 
cillation. 

In Figure 6 the trajectory followed by a soliton in an 
oblique waveguide characterized by a triangular trans- 
versal refractive index profile is shown. 

Due to the difference path followed, a relative phase 
difference Δ0 has generated. This phase difference can be 
calculated by means of the difference of path, since the 
wavenumber β0 has been assumed to be equal to one in 
the normalization operation. 

We therefore have: 

0 02 012 1.388 radL L             (25) 

Since a repulsive interaction in the center of the main 
waveguide is desired, the relative phase difference must 
be variable between π/2 e 3/2π. It is therefore necessary a 
longitudinal length of the two waveguides almost equal 
to twice Z0. Further, it is necessary the two solitons enter 
the main waveguide with opposite transversal velocities 
directed towards the center of the main waveguide. The 
choice made about the inclination of the two input  

 

Figure 6. Trajectory followed by a soliton in an oblique 
waveguide characterized by a triangular transversal refrac-
tive index profile. 
 
waveguides (vG2 = 2vG1) allows to reach this goal if ZTOT 

= 5Z01 = 277777.7 . 
The trajectories followed by the solitons inside input 

waveguides are shown in Figure 7. 
The obtained phase difference is equal to Δ = 2Δ0 = 

2.777 rad. 
When the two solitons reach z = ZTOT they are charac-

terized by the same opposite velocity equal, in modulus, 
to vG2 = 2vG1 = 0.005. This behavior is due to the choice 
of proper inclination (one twice the other) of the two 
input waveguides. 

At the entrance of the main waveguide, soliton 1 is 
positioned in the center of waveguide whereas soliton 2 
is shifted of a distance d   with respect to the axes of the 
waveguide. 

Due to the periodicity of motion, it is possible to ca- 
lculate d   as the transversal distance between the center 
of the waveguide and the beam at z = Z01 since it is the 
same distance at z = 5Z01: 

   01 01

2
2 01 01

1
138.889

2

G B

G T

d x Z x Z

v Z a Z

  

  
       (26) 

4.3. Design of the Main Waveguide 

The design of the main waveguide is aimed at finding its 
width XG and the distances ZD and ZP where to position, 
respectively, the drain waveguides and the parabolic 
waveguides. 

The width XG must be obviously greater than the width 
of the two input waveguides. For this reason, it has been 
chosen XG = 1138.889 that guarantees a distance between 
the outputs of the two input waveguides (whose width is 
equal to 400 normalized units) equal to 200 normalized 
units plus a distance 138.889d    necessary to make 
symmetric the path of the two solitons. This choice al- 
lows to position the left and the right drain and parabolic 
waveguides at the same longitudinal distance ZD e ZP 
respectively. 
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Figure 7. (a) Trajectory of soliton A inside input waveguide 1. (b) Trajectory of soliton B inside input waveguide 2. 
 
It is now possible to calculate ZP. Both the solitons 

enter the main waveguide with an inclination with re- 
spect to the longitudinal distance equal to 0.005 and they 
must propagate along a distance equal to 938.889. 
Therefore we have: 

938.889
187777.78

0.005PZ  
          (27) 

To calculate ZD it is necessary to study, from the ana- 
lytical point of view, Equation (3) related to the interact- 
tion force between two different solitons. We have de- 

monstrated that this equation is solvable and we found 
the transversal distance x as a function of the longitudinal 
coordinate z. Since we have already designed the two 
input waveguides, we know the initial distance x0 and the 
relative velocity v0 of the two solitons entering the main 
waveguide. 

This allows to calculating the two constant c1 e c2 of 
Equation (8), solving the system composed by Equations 
(9) and (10). 

Substituting the values x0 = 738.889 and v0 = −0.01 we 
have: 



M. M. CORBELLI  ET  AL. 188 

1 0.0001000000368712c            (28) 

2 53998.4715691338c             (29) 

The behavior of xG(z) is shown in Figure 8. 
The obtained behavior is coherent with what one could 

expect. It is possible to see that the relative distance be- 
tween the two solitons decreases linearly with z until the 
repulsive force becomes more intense due to the reduced 
relative distance. At this point they invert their motion 
and they start to detach with a velocity equal and oppo-
site with respect to the initial velocity. Using Equation (3) 
we can solve the following (30) with respect to ZD: 

  1138.889Dx Z 
            (30) 

Thus we have the propagation distance ZD necessary to 
reach the side of mainwaveguide where it is possible to 
position the parabolic waveguides: 

147996.936DZ              (31) 

For brevity, further details about drain waveguides are 
not given since they design is similar to the design of 
input waveguides. Their purpose is to take the single 
solitons away from the device, to avoid them to reach the 
output of the device, realizing the desired EXOR logical 
operation. 

4.4. Design of Parabolic Waveguides 

It is now necessary to design the parabolic waveguides. 
It has been shown that the input waveguides generate a 

relative phase difference between solitons equal to Δ = 
2.777 rad. This phase difference is necessary to generate 
a repulsive reciprocal action when both solitons propa- 
gate inside the main waveguide, pushing them towards 
the drain waveguide and generating a logical 0 when 
both inputs are equal to 1. 

This phase difference is very critical when only single 
solitons propagate inside the main waveguide since it 
represents information about the input that generates 

 

 

Figure 8. Behavior of relative distance between the two 
solitons in the main waveguide as a function of z. 

the output which could be used by an eavesdropper to 
attack the device and discover the original enciphered 
message. 

It is therefore necessary to use two different wave- 
guides that compensate the relative phase difference in- 
duced by the two input waveguides to let the single soli- 
tons coming from the inputs to reach the output of the 
device with the same phase, becoming indistinguishable 
from the phase point of view. 

To reach this scope, two parabolic waveguides are 
used that must be correctly designed. 

A parabolic waveguide has been chosen since it rep- 
resents the simpler curve that takes a soliton from an 
inclination that respects the paraxial approximation to an 
inclination with respect to the longitudinal axes equal to 
zero and vice versa. Further, parabolic trajectory is the 
one followed by a soliton that propagates inside a trian- 
gular refractive index profile waveguide. 

The longitudinal parabolic waveguide has already 
been studied [13]. In the following we report only the 
significant parameters necessary to design the parabolic 
waveguide of the considered device. 

In a longitudinal parabolic waveguide the position xG(z) 
of the central part of the waveguide as a function of z 
coordinates is: 

 
2 2

G

z d
x z z

a a
 

            (32) 

where a is a real constant responsible for the curvature of 
the waveguide and d a real constant responsible for the 
position of the curve. 

In a similar way to the oblique waveguide, a lock-in 
condition exists. This lock-in value is [13]: 

1

2

0

1
D

d b
C

a n

 
                (33) 

where b represents the half width of the triangular trans-
versal refractive index profile. It is possible to demon-
strate that the length of the curve expressed by Equation 
(32) (that is half of the total length of the whole wave- 
guide) is equal to: 

2

2 2
2

2

4

2 2

4
log 8 4

8

log
4

GL d d a

d

a d
d a d

d

a
a




 
   
 
 



a
    (34) 

The paraxial condition must be respected also for this 
curve. Since the curvature reaches its maximum value at 
the begin, it is sufficient to check the respect of the par-  
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axial condition only in this last point: 

  2
0 tanh8 0.14G

d
v

a
           (35) 

It is also well known that in this kind of waveguide the 
half of its longitudinal length can be calculated from its 
parameters a and d: 

ˆ

2

Z
a d 

               (36) 

It is now possible to design both the parabolic wave- 
guides. 

Let L1 and L2 be the length of parabolic waveguides 1 
and 2 respectively. If Δ is the relative phase difference 
(and therefore the path difference since we are working 
with normalized units), if a compensation of the phase 
difference between the two solitons is desired (relative 
phase difference equal to zero), it is necessary that: 

2 1L L                  (37) 

In our design process we decide to design the para-
bolic waveguide 1 in an independent way with respect to 
the parabolic waveguide 2, choosing realistic values of 
the parameters and respecting Equation (33) and Equa-
tion (35). After this choice it is possible to determine the 
length L1. Once determined L1 we impose the same value 
Ẑ  for waveguide 2 and we express the parameters a2 
and d2 as a function of d1 by means of a proper parameter 
k: 

2d kd 1                 (38) 

2

1

ˆ 2Z
a

kd


               (39) 

At this point it is possible to calculate L2 as a function 
of k and to solve the following equation: 

 2 1L k L  
             (40) 

with respect to k. Once found the value k that satisfies 
Equation (40), it is possible to calculate the parameters a2 
and d2 from Equations (38) and (39). 

Finally it is necessary to verify that lock-in condition 
and paraxial approximation are respected in the calcu- 
lated waveguide 2. 

The used process is heuristic and different attempts 
can be necessary before finding the optimal solution, 
since the respect of the paraxial condition can be verified 
only at the end of the calculation. It is anyway evident 
that if Ẑ  increases (and therefore the parameters a of 
the waveguides increase), Equation (35) can be satisfied 
in an easier way. 

Let’s apply the proposed method to the design of the 
longitudinal parabolic waveguides. 

A proper value is  that allows to write: ˆ 700000Z 

1 1 2 2 350000a d a d 
         (41) 

The width of the waveguides is equal to 2b*, being b* 
equal to one half the width of the triangular transversal 
refractive index profile. In this case it has been chosen b* = 
150, that is a different value with respect to the relative 
value of input waveguides and drain waveguides. Since it 
must be 2b* < d1, we choose d1 = 500, obtaining, from 
Equation (36), a1 = 15652.47584. 

The length of the first parabolic waveguide can be 
calculated from Equation (34) obtaining L1 = 700000.952. 
Given this value, using Equations (37)-(39) and the con-
dition Δ = 2.77, it is possible to calculate the parameters 
of the second parabolic waveguide that are: 

2 2 211126.54; 989.5; 700003.711a d L     (42) 

Once calculated all the parameters, it is necessary to 
verify that the two parabolic waveguides respect the con-
dition expressed by Equation (33) and Equation (35). 
Substituting the numerical values obtained for the two 
waveguides, with C = 0.03, Δn0 = 0.01 and b* = 150, we 
have: 

1

2
1

1 0

1
0.012 0.03

d b

a n

 
           (43) 

1

2
2

2 0

1
0.026 0.03

d b

a n

 
           (44) 

which demonstrate that the lock-in condition is satisfied. 
We also have: 

1

1

0.014 0.07
d

a
 

            (45) 

2

2

0.028 0.07
d

a
 

             (46) 

which demonstrates that the paraxial approximation is 
satisfied. 

To complete the design of the device it is necessary to 
calculate the distance from the end of the parabolic 
waveguides where it is necessary to position the output 
of the device itself. The two solitons, due to the feature 
of the parabolic waveguides, exit the waveguides them-
selves with the same entrance inclination equal to v = 
0.005. Since they have to cross a transversal distance 
equal to XG/2 to reach the center of the main waveguide, 
the related longitudinal distance where to position the 
output of the device is equal to: 

2
113888.889G

OUT

X
Z

v
 

       (47) 
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5. Numerical Simulations from the developed theory. 
It has therefore been shown that all the numerical 

simulations confirm the developed theory. The slight 
variation obtained with respect to the theory is due to 
other effects, such as the interface refractive index varia- 
tion between waveguides, and that have not been consid-
ered in this paper for brevity. 

To verify the correctness of the designed device, the dif- 
ferent operative conditions have been simulated using a 
FD-BPM algorithm and the results are compared with 
what one could expect from the developed theory. 

In Figure 9 the numerical simulation when A = 1 and 
B = 0 is shown. It is possible to see that the soliton A, at 
the beginning remains confined into the input waveguide 
1, where it propagates oscillating according to the theory. 
Once reached the exit of the input waveguide, the soliton 
enters the main waveguide. It propagates through it 
reaching the entrance of the parabolic waveguide where 
it propagates, changing its phase, until reaching again the 
main waveguide where it propagates reaching the output. 
The soliton experiences some slight refractive index pro- 
file variations when it leaves one waveguide and enter 
the next one, as it is possible to see in the numerical 
simulation. This refractive index variation has not been 
considered in the theory, for brevity, but they do not in- 
fluence in a significant way the functionality of the de- 
vice that behaves according to the theory.  

The last simulation (A = 1, B = 1) is shown in Figure 
11. 

Numerical simulations were performed in normalized 
units. 

6. Practical Considerations  

To design the device from a physical point of view it is 
sufficient remember the normalization: βX = x, βZ = z. 
Inverting them properly and applying them to the values 
obtained in the normalized design phase, it is possible to 
have a real device. 

Using the physical parameters related to the consid-
ered material (Schott Glass B270), it is possible, by 
means of Equation (13), to calculate the intensity of the 
laser beam necessary to induce a soliton in the device: 

In Figure 10 the numerical simulation when A = 0 and 
B = 1 is shown. Also in this situation the numerical 
simulation confirms the correctness of the design theory. 

 

 
I 2 10

2
2

1
1.167565 10

2log 2 3
s

n W
I C

n m
 


6

 (48) In this case both solitons are present. It is possible to 
see that they interact in a repulsive way when they meet 
at the center of the main waveguide, pushing each other 
towards the drain waveguides. In this situation the output 
of the device is equal to a logical 0 since the two solitons 
are not capable of reaching the output itself. Also this 
numerical simulation confirms what one could expect  

This value ensures the generation of a fundamental 
soliton that follows the trajectories imposed by the de-
sign phase since all the effects depended on the normal-
ized amplitude C and therefore on its real intensity ex-
pressed by Equation (48). 

We want now to do some considerations about the op-  
 

 

Figure 9. Numerical simulation of the device when A = 1 and B = 0. 
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Figure 10. Numerical simulation of the device when A = 0 and B = 1. 
 

 

Figure 11. Numerical simulation of the device when A = 1 and B = 1. 
 

erative velocity of the device. The main parameter that 
characterizes the computing time of the device is repre- 
sented by the response time of third order nonlinearities 
of the used material. The origin of these kinds of nonlin- 
earities, at the atomic level, is not quite clear [14]. In 
borosilicate glass, such as the considered Schott B270, 
the response time of Kerr effect is lesser than 10 ps [15]. 

This extremely low value shows that the temporal per- 
formances of the considered device are mainly limited by 
the repetition rate of the laser source. Due to the structure 
of the device, it is possible to operate on train of solitons, 
provided that their temporal distance is greater than the 
nonlinear response time of the material. Further consid- 
eration about the temporal behavior of the device are out 
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of the scope of the paper. 

7. Conclusions 

An all-optical EXOR for cryptographic application has 
been studied. Its working principle is based on the pro- 
pagation and interaction properties of spatial soliton 
beams. 

The proposed device is composed by different kind of 
waveguides characterized by particular transversal re- 
fractive index profiles. The property of these waveguides 
was already known and they have been applied to our 
specific situation. 

The novelty is represented by the study of interaction 
force between parallel propagating solitons where an 
analytical solution was found. This solution was applied 
to the interaction phase between two solitons in the main 
waveguide, allowing to correctly positioning the drain 
waveguides necessary to avoid the solitons to reaching 
the output of the device when both input are logical 1. 

The proposed device can be used both in the ciphering 
and in dechipering phase. The computing time is limited, 
from the theoretical point of view, only by the response 
time of the third order nonlinearities of the material that, 
in our case is lesser that 10 ps. 

The problem of the different relative phase of the two 
solitons that reach the output has been analyzed and 
solved, ensuring the two different solitons to reach the 
output with the same relative phase, becoming undistin- 
guishable to an eventual eavesdropper and guaranteeing a 
high level of security of the device. 
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