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Abstract 
 
An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is 
presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a 
function of an encryption serial key that merge with the data stream, generating a ciphered stream. The 
greatest advantage of the device is real-time encrypting – data can be transmitted at the original speed with-
out slowing down. 
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1. Introduction 
 
The device described in this paper is capable of codify-
ing a given bit stream of optical pulses, changing their 
phase and their amplitude as a function of an encryption 
serial key that merges with the data stream, generating a 
ciphered stream. It is based on the special properties of 
spatial solitons that are, as well known, self-trapped op-
tical beams able to propagate without any change of their 
spatial shape, thanks to the equilibrium, in a self-focus-
ing medium, between diffraction and nonlinear refraction 
[1]. 

Their interesting properties have allowed to design a 
certain number of spatial optical switches which utilize 
the interaction between two bright or dark soliton beams, 
and the waveguide structures induced by these interac-
tions [2-6]. Two distinct parallel solitons are generally 
used as initial condition for such interactions. In fact it is 
well known that when two distinct bright spatial solitons 
are launched parallel to each other, the interaction force 
between them depends on their relative distance and their 
phase [7,8]. 

A variety of useful devices can be thought and de-
signed using the properties of solitons. One of the most 
important features is their particle-like behaviour and 
their relative robustness to external disturbs. 

Interesting effects have been found in the study of 
transverse effects of soliton propagation at the interface 
between two nonlinear materials [9-11] or in a material 

in the presence of a Gaussian refractive index profile, 
that is in low perturbation regime [12]. 

It has been shown that it is possible to switch a soliton, 
in the presence of a transverse refractive index variation, 
towards a fixed path, since the index variation acts as a 
perturbation against which the soliton reacts as a particle, 
moving as a packet without any loss of energy. This last 
property makes possible to design useful all optical de-
vices such as a filter [13] or a high speed router [14], 
thanks to the possibility of generating spatial soliton in 
real material [15-17]. 

The general problem of encrypting the data transmit-
ted on an optical medium is very felt in the security field 
[18-33].  

The aim of the present work is to find a new approach 
to this problem, studying a device that is able to increase 
the security level of an optical channel, extending the 
modulation also to the phase of the output pulses. It acts 
as an amplitude/phase converter accepting two binary 
modulated stream of pulses as inputs and generating a 
unique phase modulated stream of pulses as output. The 
first stream is related to the data stream while the second 
stream is related to the serial cryptographic key. The 
great advantage is that the device is totally passive, 
which means that is does not need extra energy to work 
properly. The working principle is shown in Figure 1. 

In its basic geometry a soliton beam travels in a 
waveguide which, in the plane between the cladding and 
he substrate, has a distribution of refractive index which  t    
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Figure 1. Working principle of the device. 

 
follows a triangular curve, with a modified parabolic 
profile. 

We start studying the general structure of the device. 
Then the transverse behaviour of a soliton in a triangular 
profile [13], whose longitudinal profile is parabolic [14], 
is discussed. Once the properties of motion are derived, 
we investigate the structure from the global point of view, 
deriving all the properties and the operative conditions, 
that represents the scope of this paper. 
 
2. Structure of the Device 
 
To simplify the development of the theory we consider 
only a 2-in-1-out device. The function of the device is to 
generate a phase modulated pulse according to the dif-
ferent combinations of amplitude of input pulses, that 
represent the data stream and the cryptographic stream. 
In the following we briefly call them input 1 and input 2. 
This is equal to say that, in the presence of two binary 
inputs, the possible amplitude combinations are 4, and 
the output pulse has to assume 4 different phase values, 
without requesting auxiliary energy. 

We suppose to work with soliton beams to use their 
attracting or repelling properties [7] and their particular 
behaviour when they propagate in a transverse refractive 
index profile [13]. The structure we want to study is 
shown in Figure 2. 

We also suppose that the two input pulses enter in the 
relative inputs of the device with the same phase. This is 
not a restriction since any phase difference can be prop-
erly compensated. 

Owed to the fact that we deal with equal streams of 
pulses the last condition means that the input pulses are 
characterised by the same amplitude. 

The device is composed by 4 parts: the main 
waveguide, the secondary waveguide, the delay branch 
and the drain waveguide. The geometry and the refrac-
tive index values of these four components strictly de-
termine the features of the device and their values will be 
designed as discussed in the following. 

Let us analyse the behaviour of the device in the four 
possible input situations. Since we deal with binary input 
pulses we consider the two values of logical zero (ab-
sence of pulse) and logical one (presence of pulse). We 
refer to them as zero and one. 

The first situation is when the two inputs are equal to 
zero. In this case, due to the passive nature of the device, 
we obtain a zero in the output. 

The second situation is when the first input is equal to 
one and the second input is equal to zero. In this case, if 
the refractive index of both the delay branch and the drain 
waveguide is less or equal to the refractive index of the 
main waveguide, the pulse propagates undisturbed and it 
reaches the output, with a phase that is equal to the propa-
gation phase along the main waveguide. If the length of 
this waveguide is properly chosen, according to the wave-
length of the beam, the phase of the output pulse is equal 
to the phase of the input pulse. In the first situation there 
was an absence of pulse and its phase value was virtually 
equal to zero. In this case the phase value variation has 
been chosen equal to zero but we are in the presence of a 
pulse. The phase variation could anyway be chosen at will, 
but we keep it fixed at zero for simplicity. The behaviour 
of this kind of waveguide has already been studied [13]. 

 

 

Figure 2. Structure of the device. 
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The third situation is when the first input is equal to 
zero and the second input is equal to one. In this case, 
since we are in the proper refractive index conditions of 
the waveguide and the delay branch is properly shifted 
with respect to the input point of the secondary wave, the 
second input pulse is trapped in the main waveguide and 
it reaches the output with a certain phase difference, that 
we define later, with respect to the previous case due to 
the fact that it propagates, in the initial part, into the 
secondary waveguide. 

The fourth situation is when both the inputs are equal 
to one. In this case the two pulses meet at the converging 
point between the main waveguide and the secondary 
waveguide. In this case, since we are in soliton propaga-
tion condition, they can attract if their relative phase is 
included between zero and /2 or between 3/2 and 2, 
or they can repel if their relative phase is included be-
tween /2 and 3/2. If the length of the secondary 
waveguide is chosen to generate a repulsive condition, 
the two solitons propagate in the main waveguide prop-
erly separated until reaching the bifurcation point be-
tween the main waveguide, the delay branch and the 
drain waveguide. At this point the two solitons detach: 
the first one enters the delay branch while the second one 
enters the drain waveguide.  

The first soliton propagates in the delay branch ex-
periencing a phase variation that depends on the length 
of the branch and therefore is properly selectable and can 
be chosen different from the previous cases, generating 
the fourth phase condition. The second pulse, on the 
contrary, propagates in the drain waveguide where it 
reaches the proper drain output. 

The delay branch is composed by a properly modified 
longitudinal parabolic waveguide, whose purpose is to 
accept the beam from the main waveguide with an angle 
that respects the paraxial approximation, to propagate it 
changing its direction until reaching a straight longitudi-
nal direction and to reverse this sequence until carrying 
the pulse inside the main waveguide with a certain phase 
difference. The behaviour of this modified parabolic 
waveguide is studied later. 

The situation is summarised in Table 1, where it is 
also pointed out the pulse that reaches the output to pro-
vide more details about the working principles of the 
device, even if we consider input pulses with the same 
amplitude. 
 
3. Properties of a Soliton in a Modified 

Longitudinal Parabolic Waveguide 
 
We want now to define the structure of the modified 
parabolic waveguide composing the delay branch to find 
its peculiar properties that allow the loop to work prop-
erly. 

Table 1. Working scheme of the device. 

N
Input 1 
(Inten-

sity) 

Input 2 
(Inten-

sity) 

Output 
(Inten-

sity) 

Output 
Phase 

Phase 
condition 

     

1 0 0 0 0 - 

2 1I  0 1I  0 - 

3 0 2I  2I  
2  2

3

2 2

    

4 1I  2I  
1I  1,2  - 

 
We choose this kind of waveguide because it is the 

simplest curve that carries progressively the soliton beam 
from a propagation angle that respects the paraxial ap-
proximation until an angle that respects a parallel longi-
tudinal propagation and vice versa. 

This curve could be roughly approximated with a lin-
ear curve, but the final result would be a too sharp path, 
since the soliton reaches the reversing point with a cer-
tain inclination. Further the parabolic path is the trajec-
tory followed from a soliton beam that is injected into a 
linear transverse refractive index profile, that is the 
transverse profile that we are going to consider. 

Let us consider a soliton beam propagating in the 
z-direction, whose expression of the field Q at the begin-
ning of the structure is: 

    x-xCsech0, CxQ              (1) 

where x  is the position of the centre of the beam and 
C is a real constant from which both the width and the 
amplitude of the field depend. The variables x and z are 
normalised with respect to the wavevector of the wave 
and therefore they are adimensional quantities. 

When the soliton beam is propagating in a triangular 
transverse index profile, whose maximum value is 0n  
and whose maximum width is 2b, it is subjected to a 
transverse acceleration equal to [13,14]: 

202
T

n
a

b


 C               (2) 

We use, for our analysis, a dynamic point of view, that 
is to consider the step by step transverse relative position 
of the waveguide with respect to the beam using the z 
variable as a time parameter. 

If  Gx z  is the position of the central part of the 
waveguide profile with respect to z, the longitudinal form 
of the waveguide is chosen to be a modified parabolic: 

 
2

2

2
G

z d
x z

aa
  z            (3) 

where 'a' is a real constant responsible for the curvature 
of the waveguide and 'd' is a real constant responsible for 
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the position of the curve. Equation (3) can be better un-
derstood if it is expressed as a function of z, that is: 

Gz a x d a d               (4) 

It is possible to see that it is positioned in the second 
quadrant of the Cartesian plane, it has a vertical asymp-
tote at  Gx z d  when z a d . It shows a gradu-
ally increasing derivative, growing from a starting angle 
at x=0, chosen to be below the maximum angle allowed 
from the paraxial approximation, until reaching a vertical 
alignment at  Gx z d , that is what we want to make 
the device work properly. To respect this term it is nec-
essary to impose a certain condition to the ‘a’ and ‘d’ 
parameters, as we show later. A graphical representation 
of (4) is shown in Figure 4 for a=16.9 and d=1.4. 

The local inclination of the waveguide with respect to 
the longitudinal axis z, can be regarded as the transverse 
relative velocity of the waveguide that appears to the 
beam that propagates longitudinally: 

 
2

2 2
v G

G

dx z z

dz aa
  

d
          (5) 

Using (2) it is possible to calculate the transverse rela-
tive velocity: 

20

0

2
v

z

B T

n
a d C z

b



             (6) 

and the position of the beam 

2 20

0

v
z

B B

n
x d C

b



  z            (7) 

Equation (7) is valid for a propagation in the first 
quadrant of Cartesian plane. Since we consider, in our 
case, a propagation in the second quadrant, we must re-
verse the sign of the second member of the equation con-
sidered. 
 

 

Figure 4. Graphical representation of the modified para-
bolic waveguide for a=16.9, d=1.4, in normalized units. 

Initially the beam is positioned in the centre of the 
waveguide. Since the waveguide appears to move, with 
respect to an observer that follows the longitudinal direc-
tion, with a relative velocity expressed by (5), the soliton 
beam enters in the constant acceleration zone, where its 
velocity increases linearly with z. It also follows a para-
bolic trajectory, according to (7), until it remains in this 
part of the waveguide. 

After that the beam has propagated for a certain z dis-
tance, two different situations may happen: the beam 
leaves the acceleration zone without reaching the veloc-
ity of the waveguide at that z, or the beam acquires a 
velocity that is greater than or equal to the velocity of the 
waveguide. The first event may called ‘detach situation’, 
since the beam leaves the waveguide, while the second 
one may be called ‘lock-in situation’ since the beam 
reaches the other side of the waveguide where it is 
stopped, reversing its path and so on.  

At any value of z, as shown in Figure 3, the distance 

BGd  between the beam and the waveguide is: 
2 2

20
2

2 2
2 0

2

2

2

BG B G

n C z d
d x x z

b aa

b a n C d
z z

aa b


     

  
   

 

z

b

   (8) 

A detach situation takes place when: 

BGd                    (9) 

If we solve (9) with respect to z, we can calculate, if it 
exists, the propagation distance where the detachment 
begins: 

2 2
0

2 2
0

D

d d b a n C
z

b a n C

ab

   


 
          (10) 

 

 

Figure 3. Relative distance waveguide-soliton at some 
propagation distance z. 
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The two solutions refer to the detach situation (when 
the negative sign of the root is considered) or to the first 
cross of the centre of the waveguide in the lock-in situa-
tion (when the positive sign of the root is considered). 
Studying the discriminator of (10) it is possible to derive 
the value of the amplitude DC  that divides the lock-in 
values from the detach values: 

1 2

0

1
D

d b
C

a n

 
   

           (11) 

It is possible to see, from (11), that the more the cur-
vature of the waveguide (‘a’ parameter) increases or the 
more the refractive index decreases and the more DC  
increase. This behaviour agrees with what one could ex-
pect. 

We want now to calculate the inclination according to 
which a soliton, whose amplitude is smaller than the de-
tach amplitude, leaves the waveguide. Since the men-
tioned angle is equal to the detach velocity, substituting 
(11) into (6), we have: 

1tan vD
             (12a) 

and 

 
2

0
2 2

0

2
v v (D B D

n C a
z

b a n C


 

 
d   

2 2
0 )d b a n C        (12b) 

In Figure 5 it is shown the graphical behaviour of (12) 
for a=16.9, d=1.4, b=0.25, . The detach 
value 

5
0 1 10n   

DC  can be calculated by means of (11) and it is 
equal to 20. 

Due to the absence of restrictions about the length L of 
the waveguide, the lock-in value DC  of the amplitude, 
expressed from (11), does not depend on L. This means 
that, given a certain waveguide whose length is equal to 
L, we can obtain a lock-in value DC  whose detachment 
distance, calculated from (10), is longer than L. In this 
situation, due to the restriction imposed from the 
waveguide length L, the detach value DC  obviously 
decreases. In fact, even if the beams characterised from 
an amplitude lesser than DC  tend to be expelled from the 
waveguide, the detachment takes place at a distance that 
is longer than the waveguide length L and the beam re-
mains locked-in. The new value DC , that is lower than 

DC , can be calculated from (10) setting Dz L  and 
solving respect to C: 

2 4

2DL

B B AC
C

A

  
          (13a) 

where  
4 2 2

0A a n L               (13b) 

2 2 3 4 2
0 02 2B a bL n a b d L n a b n0         (13c) 

2 2 2 2 32C b L ab L d a b           (13d) 

We want now to make some considerations about the 
paraxial approximation. 

Since we deal with a modified parabolic waveguide, 
we are in the presence of a curvature, with respect to the 
z axis, that increases with z. We have not to forget that 
we are in a paraxial approximation, that is the derived 
equations are valid until the angle between the propaga-
tion direction and the longitudinal direction is lesser than 
8°10°. This means that, due to the analytical expression 
of the waveguide, expressed from (3) or (4), once the ‘a’ 
or ‘d’ parameter has been chosen the other parameter is 
unavoidably fixed. The condition must be imposed only 
at the entrance of the waveguide, where the curvature, 
with respect to the longitudinal direction is maximum 
and decreases up to zero at the end. In analytical terms 
this means that it is possible to impose this condition to 
the first derivative of (3) to calculate the maximum 
propagation distance: 

  2
0 tan 8G

d
x

a
     0,14        (14) 

that gives: 

27 10
d

a
              (15) 

This condition must be considered in the project of the 
delay branch. 

We want now to calculate the length of the curve ex-
pressed by (3), since it is necessary to control the optical 
path, and therefore the phase variation, of the beam that 
propagates inside it. 

Considering (4), the first derivative of z with respect 
to x is: 
 

 
Figure 5. Detach angle  in degrees, equal to atan (vD), 
versus C for a=16.9, d=1.4, b=0.25, Δn=1·10-5. 
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2

dz a

dx x d
 


            (16) 

and the elementary length of the curve, as a function of x 
is: 

 
2

2 2 2

4

a
dl dx dz dx dx

x d
   


2     (17) 

Integrating (17) we have: 

 
 

2

2
4 4

log(8 8
2 8

x d a
x d

ax dI x

 


  x d   

 
2

2 4 4
4 ) constant

x d a
a x d

x d

 
   


  (18) 

It is possible to see that the integral becomes indefinite 
when x tends to -d, as one could expect due to the struc-
ture of the curve. To define the constant that is present in 
Equation (18) it is necessary to calculate the limit of the 
integral when x tends to -d: 

 
2

lim log
4x d

a
I x


 a             (19) 

The length of the curve is therefore equal to: 

  
2 2

2

2 2 2

4
0 log

2 8

4 4
4 ) 4 ) l

4

G

d d a a
L I d a

d

d a d a a
d d

d d


   

 
  

8

og a


   (20) 

that is obviously a complex function of ‘a’ and ‘d’ pa-
rameters. 
 
4. Numerical Simulation of the Effect 
 
We have simulated the device from the numerical point 
of view using a FD-BPM algorithm to study its behav-
iour and to see if it agrees with the developed theory. 

At first the design does not consider the physical limi-
tations that can arise when we deal with technological 
fabrication problems. In the next paragraph we will con-
sider this kind of problems. 

We use, in this situation, a geometrical approach, that 
is we do not care of imposing particular conditions that 
would be necessary in a real situation, such us to use the 
same 0  for all the waveguides, letting us a higher 
number of degrees of freedom. We are further free of 
using the wavelength we need to generate the proper 
phase variation according to our needs. This is not obvi-
ously possible in a real case where the wavelength is 
given. 

n

Let us choose for example the half length of the delay 

branch waveguide equal to 20: 

20a d                (21) 

Since we have to respect, even in this design approach, 
the paraxial condition, we have to solve the system of 
equations composed by (21) and (15) that gives a = 16.9, 
d=1.4. 

The width of the waveguide must obviously be less 
than ‘d’ and we choose, for example b = 0.25, that is to 
suppose a waveguide width equal to 2b = 0.5. 

The spot size of the beam must be less or equal to ‘b’. 
Since we deal with a hyperbolic secant profile, expressed 
by (1), the width is linked to the amplitude C, that is the 
greater is C the narrower is the beam. A proper value is 
C = 20. 

The difference of length between the interested part of 
the main waveguide and the delay branch can be calcu-
lated using (20) that gives . Once chosen 
the wavevector we have immediately the phase differ-
ence. 

0.1305GL 

We have not, until this point, chosen the phase values 
to code. We decide to generate a phase difference a bit 
greater than /2 for the passage through the secondary 
waveguide and a phase difference greater than  for the 
passage through the delay branch. This is equal to say 
that the length of the delay branch must almost be twice 
the length of the secondary waveguide. Since the length 
of the delay branch has already been chosen we have to 
design the secondary waveguide. A proper structure is 
for example the one whose projections on the longitudi-
nal and transversal directions are respectively equal to 35 
and 2, that gives a difference of length between the in-
terested part of the main waveguide and the secondary 
waveguide equal to 0.0571, that is less than one half of 
the relative difference of length of the delay branch. 

We have now to find the value of the wavevector that 
allows to obtain the chosen phase values. A good values 
is =30, that gives a phase value of 1.24  for the delay 
branch and a phase value of 0.55  (a bit larger than the 
minimum value of /2 that allows the Repulsion between 
two close soliton beams) for the secondary waveguide. 

Once chosen all the geometrical values of the structure 
it is necessary to select the refractive index of the 
waveguides to ensure the correct trapping of the beams 
inside them. 

From (11) we have: 

0 2 2G
D

d b
n

a C


                 (22) 

Substituting the numerical values we have 
5

0 1 10Gn    . 
Since for the secondary waveguide we have [13]: 
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 
1

2
0

v

2

G
D

S

C
n




             (23) 

where  is the tangent of the angle between the 
waveguide and the longitudinal direction, it is possible to 
solve (23) with respect to  giving: 

vG

0Sn
1

2

0

v

2
G

S
D

n
C

 
   

 
             (24) 

Substituting the numerical values we have 
6

0 2.04 10Sn    , that is 5 times less than the value 
found for the delay branch. This difference reflects the 
different geometry, and therefore the different propaga-
tion conditions, of the two considered optical structures. 
We further choose for the main waveguide a refractive 
index value equal 5

0 1 10Gn    , so that the beam that 
propagates inside the main waveguide does not enter in 
the delay branch unless it is pushed inside it. 

The design approach used until this point is obviously 
practical for the numerical simulations since, as we al-
ready said, we have no physical restrictions, but abso-
lutely impossible to be used in a real device design due 
to the greater number of limitations that is necessary to 
respect. We show a real design approach in the follow-
ing. 

Further we neglect to insert at the end of the structure 
a proper propagation distance that allows to the beam 
that enters alone in the structure through input 1 to exit 
with the same input phase, since we are mainly interested 
to the phase variations. The drain waveguide has been 
designed in a way similar to the secondary waveguide. 

The geometry of the designed structure is shown in 
Figure 6(a). 

Let us analyse the results of the numerical simulations 
for the three possible input combinations to demonstrate 
the correctness of the developed theory, neglecting the 
situation of no inputs that represents the first combina-
tion according to Table 1. 

In Figure 6(b) the numerical simulation in case of the 
presence of the only input pulse at the entrance 1 (the 
second input combination of Table 1) is shown. In this 
case, since the refractive index variation is equal to the 
one of the delay branch, the beam propagates undis-
turbed and reaches the output, generating a proper phase 
coded pulse. 

In Figure 6(c) the numerical simulation of the third 
input combination, that is the presence of only an input 
pulse at the entrance 2 is shown. In this case, the pulse 
first propagates properly trapped inside the secondary 
waveguide, due to the fact that the parameters of the 
structures have been designed to lock it. It reaches the 
main waveguide, with a certain phase difference that we 

have designed to be equal to 0.55 , reaching the output, 
and generating a proper output phase coded pulse. 

In Figure 6(d) the numerical simulation of the fourth 
input combination, that is the presence of both input 
pulses at the entrances is shown. In this case, the two 
pulses meet at the merging point between the main 
waveguide and the secondary waveguide with a relative 
phase difference greater than 0.55 , that is in a repulsive 
situation. The two beams propagate parallel each other 
properly separated, until reaching the bifurcation point. 
In this zone the pulse relative to input 1 is pushed into 
the delay branch, while the pulse relative to input two is 
pushed inside the drain waveguide where it reaches the 
drain output. The first pulse, that propagates inside the 
delay branch, is trapped inside it since the structure has 
been properly designed and enters again inside the main 
waveguide with a relative designed phase difference 
equal to 1.24 , reaching the output and generating a 
proper output phase coded pulse. 

The numerical simulations, as shown in Figures 6, 
confirm the theory developed. 
 
5. A Numerical Design of the Device 
 
We want now to give a numerical example for the design 
 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 
Figures 6. Upper view and numerical simulations. The pa-
rameters of the waveguide are a=16.9, d=1.4, b=0.25, 
Δn=1·10-5. (a) Upper view of the structure; (b) Numerical 
simulation of the behaviour of the structure in the presence 
of the only input 1; (c) Numerical simulation of the behav-
iour of the structure in the presence of the only input 2; (d) 
Numerical simulation of the behaviour of the structure in 
the presence of both input 1 and input 2. 
 
of the considered device. 

Suppose we have a Schott B 270 glass, whose optical 
parameters at 0 620nm 

/W n
 are 0  and 

 being 0  and 2  are the linear 
and nonlinear refractive indices respectively [17]. Let us 
consider a spot size of the beam equal to 

1.53n 

10d

20 2
2 3.4 10 mn   n

0 m .  
The design rules are very restrictive in a real situation 

since it is necessary to match different requests with a 
reduced free choice of parameters. In fact once fixed the 
source and the proper material for the given source it is 
necessary to design the geometry of the structure to trap 
the pulses with a proper soliton intensity level, generat-
ing the necessary coded phase variation. Further, since 
we use the same constructive technology, we suppose 

that the refractive index variation 0  is the same for 
the delay branch and for the secondary waveguide, in-
troducing another restriction. 

n

It is well known that, given a certain material and a 
certain light source, the intensity necessary to generate a 
soliton beam is given by: 

0
2 2
0 2

2
s

n
I

d n 
               (25) 

where  is the wavevector of the beam. Substituting the 
numerical values into (25) we have 

15 23.74 10 /sI W m  . 
Since the intensity of the beam sI  is related to its 

amplitude C from [12-14]: 

 
20

2
2

1

2log 2 3
s

n
I C

n

  

       (26) 

it is possible to express (11) and (23) in term of the in-
tensity of the beams. 

We choose for example  and we start 
with the design of the device. 

2
0 1 10n   

We want to code the third situation (only a pulse at the 
input 2) with a relative phase variation just greater than 
/2 and the fourth situation (both the input pulses) with a 
relative phase very close to . 

We choose 02 20d d m 

.96 m

. Substituting this value 
into Equation (15) we obtain a=0.0639. In this way the 
geometry of the delay branch is totally defined. If we 
choose 19b  , using (11) and (26) we obtain a 
lock-in value 161.25 10D

2/I W m  , that is a value 
above the soliton threshold calculated with (25) and be-
low the second order soliton threshold. 

We have now to check if, with these values, we have 
obtained a phase difference value very close to , as we 
desire. The phase difference value can be calculated as 
the product of the wavevector and the difference of path 
between the delay branch and the main waveguide. Us-
ing (20), we obtain 0.59   . This value is very 
close to the other phase value, generating two phase val-
ues very close each other. In this case it is necessary to 
make some correction to the geometry of the delay 
branch to correct the phase value to a value close to , 
keeping at the same time the lock-intensity above the 
soliton generation threshold. We choose to increase the 
value of the "a" parameter, that allows the paraxial ap-
proximation to be conserved. If we increase this parame-
ter by 1.53 times, the total length of the delay branch 
increases. The new intensity lock-in value decreases to 

15 25.36 10 /DI W m  , that is always above the soliton 
generation threshold. The phase value is in this case 
equal to , as we desired at the beginning of our compu-
tation. 
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It is now necessary to project the secondary input 
waveguide. We want to obtain the same intensity lock-in 
value calculated for the delay branch and a phase differ-
ence value a bit greater than /2. 

This kind of waveguide as already been studied [13] 
showing a behaviour similar to the parabolic waveguide 
and a lock-in value equal to: 

 
1

2
0

v

2

G
DC

n



            (27) 

where  is the tangent of the inclination angle with 
respect to the longitudinal direction. It is obviously nec-
essary to respect, even in this case, the paraxial approxi-
mation; this means that once we have chosen the distance 

vG

La  between the second input and the main input, the 
longitudinal length Lb  of the waveguide cannot be 
shorter than a minimum, calculated according to the 
paraxial limit, that is: 

tan8 0.14L La b b   L          (28) 

Since we suppose to generate this waveguide using the 
same physical procedure used for the delay branch, we 
have to suppose that the value  is the same 
for both the waveguides. If we use as a first attempt 
value L , to generate a device whose lateral exten-
sions with respect to the main waveguide are the same, 
we immedi tely obtain 

2
0 1 10n   

a d

a Lb  from (28), that allows us to 
calculate . Substituting these values into (27), using 
(26) we have an intensity lock-in value equal to 

Gv

2.23 1017 2/DSI W m   and 1.12S  

d

. The wave- 
guide designed according to these criteria is totally use-
less for our purpose since the lock-in value is greatly 
above the generation value of a second order soliton and 
consequently above the lock-in value calculated for the 
delay branch. Further, the phase value obtained is totally 
different with respect to the one we desire. It is therefore 
necessary to find another approach. If we impose the 
waveguide to have the same lock-in intensity of the delay 
branch, considering always La , we can calculate 

Lb
5650b

, reversing the reasoning followed above. In this case 
we obtain L m  that satisfies the paraxial con-
dition expressed by (27). If we calculate the phase dif-
ference we have S 0.175   , that is not only a dif-
ferent value with respect to the desired one but also a 
value that does not allow the repulsion between the two 
beams, that is a fundamental condition to make the de-
vice operate correctly. 

Consequently it is necessary to act also on La , con-
sidering a device that has not the same lateral extension 
with respect to the main waveguide. Fixing the intensity 
lock-in level to be equal to the one of the delay branch 
and fixing the phase difference S  to be as close as 
possible to 0.5 , it is possible to demonstrate that a valid 

waveguide is the one characterised by 3 60La d m   
and 16935Lb m , that provides a phase difference 

S 0.53   , respecting the paraxial condition ex-
pressed by (27). 

The problems found in the design of the secondary 
input waveguide could be avoided if we could act also on 

0n , but this is very difficult to be made in a real situa-
tion where both the delay branch and the inclined 
waveguide are generated in the same process. 

Different approaches can be used to design the device, 
as for example, to dimension first the secondary wave- 
guide and the delay branch, but they are always sub-
jected to different restrictions due to the physics of the 
waveguides generation process. 
 
6. Temporal Considerations 
 
Further considerations about the temporal behaviour and 
the absorbing behaviour of solitons in transverse refrac-
tive index profile device have already been studied 

[13,14] and they are not repeated here for brevity. 
Since the response time of the considered material are 

of the order of femtoseconds, the proposed device can 
reach operative velocity of the order of thousands of 
Gbit/s and it is limited only by the operative velocities of 
the actual sources. 
 
7. Conclusions 
 
We have studied and designed an all-optical crypto-
graphic device, whose working principles are based on 
the repulsive and propagation properties of solitons in a 
parabolic transverse refractive index profile, that we 
deeply analysed in the paper. 

The switching properties have been studied in details, 
obtaining some useful design criteria for a practical de-
vice. 

The device can be properly designed by means of the 
geometrical and optical parameters of the different 
structures that compose the modulator. 

Due to its peculiar features, the only limit to its maxi-
mum operative velocity is represented by the maximum 
repetition rate of the input sources. 
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