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All-optical security coded key
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Abstract. We present a device that is able to generate a coded sequence of pulses using a proper sequence
of input pulses. It behaves as a security coded key that does not need external energy to work.
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1. Introduction

The interesting effects of soliton propagation at the interface between two
nonlinear materials (Aceves et al. 1988; Varatharajah et al. 1989; Aceves
et al. 1990) or in a material in the presence of a gaussian refractive index
profile, that is in low perturbation regime (Garzia et al. 1997, 1998) dem-
onstrate that it is possible to switch a soliton, in the presence of a transverse
refractive index variation, towards a fixed path, since the index variation acts
as a perturbation against which the soliton reacts as a particle, moving as a
packet without any loss of energy.

In particular it is possible to select the intensity level that a soliton beam must
have to be trapped inside a curved waveguide (Garzia et al. 1999) and to be
propagated to a certain position, and the relative acceleration between two
solitons when they interact due to their partial overlapping (Garzia et al. 2000).

In this paper we use the two mentioned properties to design an all-optical
device that acts as a security coded key that is capable of emitting a proper
pulsed code, that can be hundred of bits long, once it has been properly
queried by an input sequence of pulses.

In our geometry a soliton beam travels in a waveguide which, in the plane
between the cladding and the substrate, has a distribution of refractive index
which follows a triangular curve, with a longitudinal parabolic profile, whose
properties have been already described (Garzia et al. 1998, 1999, 2000).

We first illustrate the general structure of the device then we design the
proposed device and then we test it by means of numerical simulations.
Further we discuss some points concerning the limits for the correct working
of the security key.
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2. Structure of the security key

The device is composed by N equal elementary looped cells, where N is the
number of pulses that compose the code, whose maximum number is limited
by the absorption of the device.

A stream of N pulses is used to query the key to emit its pulsed code. In the
following we will also use the term bit to indicate the binary information
carried by the presence or the absence of a particular pulse. In Fig. 1 a two
bit key is shown. The first pulse enters the device and it is attracted by the
outer loop whose structure is studied to give to the soliton pulse, after a
round trip inside it, a repulsive relative phase when it interacts with the
following pulses of the querying code. Thanks to this property, the subse-
quent pulses are repulsed and kept on the main waveguide reaching the
following stages of the device, where the process repeats again, while the
soliton pulse propagates in the inner loop.

Once all the querying pulses have entered the key, the first pulse, that has
propagated inside the first loop, is no more kept inside it by the relative
repulsion with the other pulses and exit the loop, propagating transversally

OUTPUT OUTPUT
CODE COMFLEMENTARY
CODE
B
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Fig. 1. Scheme of a two bit security key. 4 and B represent the code selection junctions of pulses related to
the loops A and B respectively.
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and reaching the output code waveguide where it can remain, if it belongs to
the code, or it can cross it, reaching the output complementary code wave-
guide if it does not belong to the code, according to the proper designed
propagation properties of the 4 junction.

The selection of the code can be made by means of the opening or the
closing of the transversal waveguides that can be constituted by Y-junctions
or analogous structures, whose behaviour is well-known and that are not
studied here for brevity. These transversal waveguides connect the output
code waveguide with the output complementary code waveguide and they
can be opened or closed from the point of view of the propagation of the
soliton beams. The particular design of the device allows the use of a com-
mon basic structure for all the keys while the code of each key is programmed
by means of simple operations of opening or closing of the transversal
waveguides performed during the production phase or in a second time.

The expulsion process from the loops takes place according to a sequence
that is equal to the input sequence of the querying pulses that direct them-
selves towards the output code waveguide where they are selected as be-
longing to the code or to the complementary code.

Also the last pulse of the querying sequence needs to propagate in a loop to
respect the temporal relation with the other pulses, even if it does not switch
any further pulse.

We want now to describe into details the structure of the elementary loop
cell that composes the device, the scheme which is shown in Fig. 2. Since it is
necessary to change the relative phase of the pulse that propagates inside the
loop only once, to make it repel with the following pulses, a double branched

Fig. 2. Scheme of an elementary loop cell.
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loop is used. The first pulse enters the waveguide 1 and propagates through
the waveguide 3, passing over the input of the waveguide 4 and the branch 6
of the loop, since they are both characterised by the same refractive index of
the main waveguide and therefore the pulse is not attracted inside them. Since
branch 8 of the loop is characterised by a higher refractive index, the pulse is
instead captured inside it. The length of this branch is calculated so that the
pulse experiences a phase variation that makes the soliton to repel the fol-
lowing pulses.

The soliton pulse propagates inside the loop until reaching again the point
3 where it propagates parallel with respect to the following pulse and slightly
overlapped with it so that the mutual repulsive force does not allow the first
pulse to enter the output waveguide 4.

The two pulses reach therefore the point 5 where the waveguide becomes
narrower and the mutual repulsive force greatly increases, pushing the first
pulse into the branch 6 of the loop and the second pulse towards the right
hand side of the point 7 of the waveguide that becomes wider. In this situ-
ation the second pulse is far enough from the branch 8 of the loop to be
attracted inside it, and it can reach the point 9 of the waveguide where it exits,
reaching the following stage.

The first pulse propagates now into the shorter loop 6, whose length is
calculated to let it have the same repulsive phase with respect to the other
pulses after each trip, repeating the same process.

When all the querying pulses have entered the device the first pulse reach
the point 3 where it does not find any repulsive action owed to the presence of
the following pulse and it moves transversally until reaching the waveguide 4
that takes it in the output code waveguide where it is selected as belonging to
the code or to the complementary code, according to the mechanism we have
discussed.

We briefly illustrate now the profile of the refractive index of the wave-
guides, the properties of the longitudinal parabolic waveguides that com-
poses the loop and the interaction force between solitons necessary to design
the device.

3. Properties of a soliton in a longitudinal parabolic waveguide

The loop structure is composed by longitudinal parabolic paths whose
transverse refractive index profile follows a triangular distribution (Garzia
et al. 1998). We choose this kind of waveguide because it is the simplest curve
that takes progressively the soliton beam to the interaction point of the
waveguides and then again into the loop. Further the parabolic path is the
trajectory followed from a soliton beam that is injected into a triangular
transverse refractive index profile, that is the transverse profile that we are
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going to consider (Garzia et al. 1999). The local inclination of this longitu-
dinally parabolic waveguide with respect to the longitudinal axes increases
with propagation distance: this means that it is necessary to impose some
limits to avoid of overcoming the paraxial approximation, endangering the
validity of the nonlinear Schroedinger equation (NLSE) and therefore of the
whole theory we are developing. For this reason two mirrors are used to close
the loop (Garzia et al. 1999, 2000).

A soliton beam propagating in the z-direction, is characterised by the
following expression of the field Q at the beginning of the structure:

O(x,0) = Csech[C(x — X)], (1)

where X is the position of the centre of the beam and C is a real constant from
which both the width and the amplitude of the field depend. The variables x
and z are normalised with respect to the wavevector of the wave and there-
fore they are not dimensional.

When the soliton beam is propagating in a triangular transverse index
profile, whose maximum value is Any and whose maximum width is 25, it is
subjected to a transverse acceleration (Chen and Liu 1978; Cow 1982; Garzia
et al. 1998). If xg(z) is the position of the central part of the waveguide profile
with respect to z, the longitudinal expression of the waveguide chosen to be
parabolic is characterised by the following expression:

xg(z) = az, (2)

where ‘@’ is a real constant responsible for the local inclination of the
waveguide with respect to the longitudinal axis.

In this situation it is possible to demonstrate that the beam remains
trapped inside this waveguide if its amplitude is greater than:

Cp = <Z—:0> 1/2- (3)

If C — 0, it is necessary to act on the parameters of Equation (3) to reduce
Cp and to lock-in the beam inside the waveguide. This can be done increasing
the refractive index Ang or reducing the parameters b and ‘a’.

The refractive index Ang can’t overcome a certain level to avoid the gen-
eration of strong index gradient that would disturb the phenomena involved.
There are anyway some physical limitations in the realisations of high
refractive index profiles.

The parameter b can be reduced until reaching the width of the beam
profile under which the index profile does not act uniformly on the trapped
beam.
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The parameter ‘a’ is responsible for the local inclination of the longitudinal
parabolic waveguide: the lower its value the greater the linearity of the curve.
This means that it is anyway possible to guide the soliton beams using linear
waveguides (Garzia et al. 1998) without influencing the correct working of
the device since the core mechanism is based on the interaction of the solitons
that takes place in the merging point between the waveguides. A longitudi-
nally parabolic waveguide is anyway used for the reasons illustrated at the
begin of this paragraph.

Since we deal with a parabolic waveguide, we are in the presence of a local
inclination, with respect to the z axis, that increases with z. We should not
forget that we are in a paraxial approximation, that is the derived equations
are valid until the angle between the propagation direction and the longi-
tudinal direction is lesser than 8°—10°. This means that, due to the analytical
expression of the waveguide, expressed from Equation (2), once the ‘a’ pa-
rameter has been chosen, the propagation variable z can reach a maximum
value over which the paraxial approximation is no more valid. In analytical
terms it means that it is possible to impose this condition to the first deriv-
ative of Equation (2) to calculate the maximum propagation distance:

Xg (Zmax) = tan 8° = 0.14 = 2azpax, (4)
that can be solved respect to zyax giving:

7% 1072

a

Zmax — (5)
Substituting Equation (5) into Equation (2) it is possible to calculate the
correspondent X ay:

49 %1073
—

(6)

Xmax =

This means that, once a parabolic profile has been chosen through the ‘a’
parameter, the soliton can propagate in it for a maximum distance equal to
Zmax- Lhis condition must be considered in the design of the loop waveguide.

For this reason it is not possible to use a closed curve and it is necessary to
use two mirrors to close the propagation loop.

4. Interaction acceleration of soliton beams

To let our device work properly we use the interaction force between solitons
whose expression has been demonstrated to be an exponential function of the
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relative distance ¢ and a cosinusoidal function of the relative phase ¢, ac-
cording to the following equation (Garzia et al. 2000):

2

a(d, QD) = %exp(—C(d — 2xHHHW)) COS q’), (d Z ZxHHHW) (7)

where xgpypw 1s the half-height half-width that is the distance from the centre
of the beam where the amplitude reduces to one half, equal to:

1
XHHHW = 610g(2 +/3), (8)

The expression (7) is very useful in the quantification of the mutual accel-
eration between solitons and it is used to design the device.

5. Design of the device

We start by designing the parabolic waveguide. We choose for the main loop
a refractive index Ang equal to 1073, If we also choose b = l and a = 4 x 1074
we can calculate from Equation (3) the lock-in value for the amplitude that is
about 0.4. We decide to use, for our device, a value for the amplitude C equal
to 2. Once chosen the main loop, since we are free to decide the temporal
length of the pulses, it is necessary to define its maximum length. We have to
remember that the paraxial approximation imposes the curve not to exceed a
curvature of about 8°-10° with respect to the longitudinal axes.

Substituting @ = 4 x 107 into Equation (5) we have zy. = 175 that sub-
stituted into Equation (6) gives xmax = 12.25: if we let the curve extend up to
a transversal distance equal to 10, that is a longitudinal distance equal to 158,
the paraxial approximation is respected.

We have now to define the external half-loop, that is the loop where the
beam propagates only the first time to acquire a repulsive relative phase
difference with respect to the following pulse of the code. The transversal
length of this curve is imposed by the internal curve. The difference between
the total length of the external curve and the total length of the internal curve
multiplied by two gives the difference of path between the two curves. Since
we deal with normalised wavevectors and refractive index, this difference is
also equal to the phase difference. Since the phase is periodical, it is possible
to choose different values for the ‘@’ parameter of the curve, without taking
care of the paraxial approximation, that is surely respected since this half-
loop is less curved with respect to the internal loop that already respects this
condition. The only restriction is represented by the total length of the
structure that we want to be as short as possible. The research of this ‘@’ value
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can be made numerically: a repulsive phase difference is attained, for ex-
ample, if we chose for the external loop a = 1.99 x 10~*. The transversal
extension of this curve is equal to 10, since we have imposed this value for
analogy with the internal loop, while its longitudinal distance, calculated
using Equation (2), is 224, that is obviously a higher value with respect to the
internal loop.

We have finally to choose a higher value for the refractive index Any with
respect to the internal loop and to the main waveguide, so that the half-loop
is able to attract and capture the soliton beams that propagates close to its
entrance. If we chose, for example, Ang = 1.5 x 1073, we attain this effect and
it is immediate possible to demonstrate, by means of Equation (3) that the
lock-in value for the amplitude for this half-loop is about equal to 0.36, that
1s 10% less than lock-in value for the internal value. This ensures that, if a
soliton beam is trapped inside the internal loop it is surely trapped inside the
external loop. Since we have chosen C = 2, the beams we are considering are
surely trapped by both the loops.

We have designed, until this point, the loop structure of the device. It is
now necessary to design the structure of the main waveguide. We chose a bit
higher refractive index with respect to the internal loop, that is
Ang =1 x 1073, so that the beams that propagates inside it tend to be ex-
pelled towards the main waveguide. The value chosen is Ang = 1.1 x 1073,

The expression of the transversal acceleration of a soliton beam in a linear
transversal refractive index profile is equal to (Garzia et al. 1998):

- 2An0
b

art Cz. (9)

When the beam propagates from loop 2 to the zone 3 of the waveguide it is
subjected to a force that tends to attract it inside the loop and a force that
tends to attract it inside the main waveguide, in an opposite direction. Since
the refractive index of the main waveguide is a bit higher with respect to the
loop, the beam tends to move slowly towards it with an acceleration that can
be calculated from Equation (9), where Any is the difference between the two
refractive index. Substituting the numerical values we have ar = 8 x 107%.
Since the transversal co-ordinate of the beam xp is related to its longitudinal
co-ordinate from:

XB :%aTzz, (10)

it is possible to resolve Equation (10) with respect to z giving:

z:\/jaif. (11)



ALL-OPTICAL SECURITY CODED KEY 535

Since the transversal distance from one side to the other of the main wave-
guide is equal to 2, substituting the numerical values into Equation (11) we
obtain that z = 70, that is the longitudinal distance between the exit of the
loop 3 and the entrance of the waveguide 4.

Since the beam is attracted out of the loop from an acceleration equal to
at = 8 x 1074, it is possible to determine the relative distance, between two
solitons inside the zone 3 of the waveguide, that generates a repulsive force
exactly equal to the transverse force generated by the index profile. Using
Equation (7) we have d = 4.4, that is the maximum distance above which the
repulsive force is no more able to balance the attraction force. Using a
shorter distance we are sure that not only the attraction force is compensated
but that one soliton is also pushed inside the loop 6.

The narrowed zone 5 is positioned immediately after the waveguide 4 so
that the repulsion of the second soliton towards the right hand side of the
waveguide does not push it out through the waveguide 4. In this way the
second soliton propagates far enough from the loop 8 to be attracted from it,
while the first soliton is pushed inside loop 6 by the repulsive action between
the two solitons.

6. Numerical simulation of the device

The designed device has been numerically simulated using a FD-BPM al-
gorithm, to check the validity of the developed theory. The structure of the
waveguides that compose the device are shown in Fig. 3(a).

We do not consider the left side of the loop waveguides since the most
significant interaction effects take place in the merging point of the different
waveguides, situated on the right-hand side of the structure.

The situations considered are the entrance of the first soliton inside the
half-loop, the switching, operated from the first soliton with respect to the
other solitons, and the exit of the first soliton from the loop waveguide to
reach the output waveguides. The results are shown in Fig. 3. The numerical
simulations confirm the correct behaviour of the designed device.

7. Operative considerations about the device

We have neglected, until this point, other secondary effects such as absorption
and radiation, that unavoidably reduce the intensity of the beams until
reaching the threshold under which they are no more trapped inside the loops.

The pulse that is mostly subjected to these effects is the first one, since it
has to travel inside the loop a number of times that is equal to the number of
pulses that compose the code.
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Fig. 3. Upper view of the significant structure, represented by the right hand side of the elementary loop
cell, and numerical simulations. (a) Upper view of the structure, (b) Numerical simulation of the entrance
of the first soliton inside the half-loop, (c) Numerical simulation of the switching operated from the first
soliton with respect to the other solitons and (d) Numerical simulation of the exit of the first soliton from
the loop waveguide to reach the output waveguides.

To compensate these effects it is necessary to increase the intensity of the
soliton beams according to the influencing parameters, but the relative dis-
cussion is out of the scope of the paper.



ALL-OPTICAL SECURITY CODED KEY 537

C 4
2
0
23 20.7 184 151 128 105 82 69 46 23 0O
(c)
C
23 207 184 151 128 105 82 69 46 23 O
(d) X

Fig. 3. (Continued)

The radiation does not take place if the paraxial approximation is
respected, since the condition for the validity of NLSE, and therefore for the
validity of the developed theory, are respected.

To see the influence of radiation on the performance of the device, non
paraxial interactions have been numerically simulated, demonstrating how it
already shows its effects in a FDTD algorithm applied to the NLSE. Further
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informations about radiation could be attained using a 2D FDTD algorithm
but this is out of the scope of this paper that is to suggest the device and to
verify its validity, restricting it to the validity of the NLSE.

In Fig. 4 the numerical simulations of induced radiating conditions,
related to the switching operated from the first soliton with respect to the
other solitons, are shown. The radiating conditions are induced increasing
the inclination of left waveguide in the interaction zone so that the two
soliton beams strongly collide, narrowing their profiles, generating strong
index variations and sudden accelerations and not respecting locally the
paraxial approximation.

In Fig. 4(a) a radiating condition is induced using a 10° collision angle
between the two solitons. In this situation the two beams moderately deform
they shape, increasing their amplitude and reducing their width, increasing
further their transversal acceleration (Garzia et al. 1999): this situation in-
duce unavoidably energy radiation with intensity reduction of both the sol-
itons beams, implying a reduction of the number of times that the first soliton
can be trapped inside the loop waveguide, that is directly related to its am-
plitude, as shown in Equation (3), and a reduction of the number of times
that the other soliton can be trapped inside the loop of the following cell,
letting anyway the device to work properly even if with a decrease of the
performance.

In Fig. 4(b) a radiating condition is induced using a 15° collision angle
between the two solitons. In this situation the two beams strongly deform
their shape, increasing their amplitude and reducing their width: in this case
most of the energy of the two solitons is lost by radiation with the results that
the intensity of first soliton is below the threshold of the loop waveguide that
is no more able to lock it in while the energy of the second soliton is too low
that it can’t interact with the following loop stage: the result is a total mal-
functioning of the device due to energy radiation.

All these factors can be compensated increasing the intensity of the soliton
but it can’t anyway exceed four times the intensity of the base soliton to
avoid the generation of second order soliton whose periodical change of
profile alters the trajectories of the beams inside the waveguide. Further the
more the intensity is closed to the intensity of the second order soliton and
the more the profile aims at changing periodically: this change has to be
considered to make the device work properly.

For this reason it is recommended to reduce all the lost factors more that
increasing the intensity of the soliton beam.

The physical absorption can be reduced using a transparent material at the
wavelength of the beam and using high quality mirrors. The absorption due
to radiation can be reduced designing the device so that the interaction be-
tween solitons takes place gradually, respecting the restrictions imposed by
the NLSE. In fact, even if the repulsion is weaker, increasing the total length
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Fig. 4. Numerical simulation of the switching operated from the first soliton with respect to the other
solitons in an induced non-paraxial condition, attained increasing the angle of collision: radiation takes
place and the device does not work properly. (a) Angle of collision: 10° and (b) angle of collision: 15°.

of the device to attain a desired effect, the respect of the NLSE conditions
does not allow energy lost, almost at this level of approximation: more
intense interactions have demonstrated to radiate energy until inducing non-
functioning conditions of the device.
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8. Conclusions

We presented and designed an all-optical security coded key, based on the
properties of soliton beams.

The switching properties have been studied in details, obtaining some
useful criteria that help to design this kind of device.

The operative frequency is limited by the geometry of the device, by the
response time of the nonlinear material and by the operative frequency of the
source that generates the querying pulses.

The maximum number of bits that compose the code depends on the
absorption properties of the device, whose reduction increases the number of
bits that the device can handle.
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