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ABSTRACT 

This paper presents a study for finding a solution to the placement of territorial resources for multipurpose wireless 
services considering also the restrictions imposed by the orography of the territory itself. To solve this problem genetic 
algorithms are used to identify sites where to place the resources for the optimal coverage of a given area. The used 
algorithm has demonstrated to be able to find optimal solutions in a variety of considered situations. 
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1. Introduction 

In a lot of enforced contexts there is the need to place 
some resources to guarantee the best coverage of an as-
signed region. It’s sufficient to consider the wide-spread 
use of  means of communication that exploit the air as a 
transfer channel like television and cellular services or to 
consider the need to watch over a region where some 
sensors are used to guarantee the safety from different 
threats like the terrorism [1-3]. 

For this reason every day it is necessary to find new 
places to install systems of transmission and/or reception 
like antennas, base stations for cellular phones and sen-
sors. 

Actually this kind of operation is not automatic and it 
is made through the experience of people that place re-
sources by analysing the map of the interested region. 
Naturally this process is approached by the iterative 
computation of the effective obtained coverage for any 
attempt. 

The purpose of this paper is to describe a new tech-
nique to automatize the initial phase of this process by 
elaborating an algorithm for the placement of resources 
on the ground to guarantee the best coverage of a given 
region. In this context the term “best” must be considered 
in a wider sense because it’s simplified by thinking about 

the wide coverage as the only requirement of the problem. 
The problem instead is more complex: the term “best” is 
referred to a coverage obtained by the balancing of dif-
ferent parameters required by the problem. Our purpose 
is to obtain a wide coverage under the condition that the 
number of placed resources is the minimum possible and 
that they work over a certain percentage of their coverage 
capability. This implies that the resources that don’t give 
a significant contribution to the coverage because of the 
presence of obstacles or because of superposition must 
be eliminated from the solution grid causing the reduc-
tion (even if it is neglect able) of the percentage of the 
obtained coverage. This let understand why the reaching 
of integral coverage of the considered territory is really 
impossible. Naturally these are only some of the condi-
tions that can be imposed to the algorithm. In general it’s 
possible to use different kind of resources, to have a 
non-uniform coverage like in urban environment, to con-
sider the coverage of the sensors in 2 or 3 dimensions, to 
have resources already placed [4,5] on the ground. All 
these conditions make the problem represented by a 
multi-objective and non-linear function so it’s quite dif-
ficult to find an optimal solution. In the solution of the 
problem it’s also necessary to take care of the orography 
of the ground using Digital Terrain Elevation Data with 
discrete resolution (DTED) as we made in the present 



Optimal Territorial Resources Placement for Multipurpose Wireless Services Using Genetic Algorithms 185 

work, to face real situations.  
The problem is quite complex both from a theoretical 

(a closed analytical solution doesn’t exist and it’s neces-
sary to proceed with subsequent approximations) and 
from a computational point of view (it’s necessary to 
reduce computation time to reasonable values) [6-38]. 

To solve the considered problem, different algorithms 
have been analysed. These algorithms, besides the prob-
lem’s characteristics, have been evaluated by other typi-
cal characteristics or by their own implementation. Be-
cause of the problem’s complexity, it’s assumed that the 
algorithm works by subsequent iterations, reaching cycle 
after cycle the better solution, but not necessary the op-
timal solution; this kind of behaviour, coherent for a 
planning algorithm, allows the final user to get early a 
solution and to be able to decide if and how long to wait 
for a better solution. The purpose of this paper is to find 
an algorithm characterized by a certain number of useful 
properties that are: 

1) To provide quickly a solution: an algorithm that 
provides a solution from the first iterations is preferred to 
one that needs more iterations; 

2) To provide iteration after iteration better solutions: 
the algorithm have to provide gradually better solutions 
increasing the number of iterations. The solution’s good-
ness depends on the elaboration time too. If the solution 
isn’t satisfying, the algorithm must be able to continue 
with the research starting from the last found solution; 

3) To reach the optimal solution: is the capability of 
the algorithm to reach the optimal final solution; 

4) To provide the distance from the optimal solution: 
in the solution of practical problems, the knowledge of 
the distance from the optimal solution is maybe more 
important than the reaching of solution itself; in fact the 
knowledge of the distance between the actual solution 
and the optimal one allows to evaluate if and when it is 
opportune stopping the research for a better solution; 

5) To reduce computational load: it’s important to find 
an algorithm that uses the minimum number of opera-
tions to reduce resources and computational time. 

This research leads to analyse different kinds of algo-
rithms that have already been used to solve similar prob-
lems or that can be adapted to the solution of this prob-
lem. For example algorithms of linear planning and evo-
lutionary algorithms have been analyzed. Genetic Algo-
rithms, that are evolutionary algorithm based on the con-
cepts of Selection, Crossover [6-10] and Mutation [15], 
have demonstrated to be the best one. 

This paper is structured as follows. In section 1 the 
model used for sensors and the study of the objective 
function is presented. In section 1 the coverage algorithm 
is presented. In section 3 the genetic algorithm used to 
solve the problem is described. In section 4 the fitness 

function of genetic algorithm is formulated. In section 5 
the computational complexity and convergence time is 
discussed. Section 6 presents the experimental results. 
Finally, section 7 discusses some conclusions and con-
siders possible future developments. 

2. Coverage Algorithm 

To verify the goodness of a solution it is necessary to 
evaluate the coverage obtained by the placement of the 
resources of the solution itself so it has been necessary to 
create a linear algorithm that evaluates the coverage of a 
single resource. 

The main idea is that the Genetic Algorithm places 
resources on the ground, cycle by cycle. For every placed 
resource a circular coverage area characterized by a ray 
R is considered. To evaluate the effective territorial cov-
erage of every resource a coverage algorithm that works 
using the point of placement of the resource itself and the 
related DTED data is used. 

In Figure 1 a scheme of the working parameters of the 
mentioned algorithm is shown: 

In the Figure 1 we have the following quantities: 
 j = point where the resource is placed; 
 j + 1 = cell near the one where the resource is placed; 
 h(j + 1) = altitude in the cell j+1; 
 heq(j + 2) = equivalent altitude in the cell j + 2; 
 P = quantity to add to h(j+1) to obtain heq(j + 2); 
 h(j + 2) = altitude in the cell j + 2; 
 hvis = visibility altitude that is the altitude we consider 

for the visibility of the cells. 
Starting from the point where the resource is placed, 

for every cell of the grid that the considered resource 
potentially covers, the equivalent altitude is evaluated for 
the next cell using a linear equation derived from a sim-
ple ratio between triangles: 

       1 : 1 2 1 :j j h j j j       P          (1) 

Solving Equation (1) with respect to P we have: 

     
 


1 2 1

1
1

h j j j
P h

j j

      j  
   

     (2) 

From Figure 1, using Equation (2), we have: 

    2 1 2eqh j h j P h j 1             (3) 

This quantity is used to verify if the cells next to the 
one we consider can be viewed to the visibility altitude. 

The initial conditions of this algorithms are:  
1) The visibility altitude is higher than the maximum 

of the altitude of the grid; 
2) The terrestrial curvature doesn’t influence the eva- 

luation; 
3) The coverage area is reduced to a circumference  
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Figure 1. Context of the coverage algorithm. 
 
characterized by a certain ray R without loss of generality 
since different shaped coverage diagrams with reduced 
increases of computation times can be also considered. 

In this study we used two different resources charac-
terized by a coverage ray R1 and R2 (R1 > R2) respectively; 
this allows of simplifying the algorithm without any loss 
of generality. 

The evaluation of effective coverage is done following 
selected directions: the choice of these directions is ex-
plained in the following. For every direction the flow 
chart representing the working principle of the algorithm 
is shown in Figure 2.  

The steps that characterize the algorithm are:  
1) We start evaluating the first P that is the one be-

tween the cell in which the resource is placed and the 
next one. If P is smaller than zero it means that the cell 
next to the cell where the resource is placed has an alti-
tude lower so it is visible at the visibility altitude. It’s 
necessary to evaluate P while it is negative or at a dis-
tance as long as the ray of the resource is covered. When 
a P greater than zero is found we evaluate the equivalent 
altitude and we go to the next step; 

2) We compare the equivalent altitude with respect to 
the visibility altitude: if this quantity is smaller than the 
other we stop the evaluation along that ray and the 
evaluation goes on the next ray, otherwise we go to the 
next step; 

3) We compare the equivalent altitude with respect to 
the altitude of the cell. If the equivalent altitude is greater 
than the altitude of the cell it is visible at the visibility 
altitude and the algorithm goes on with the next ray. If 
the visibility altitude is smaller we have to control that 
the altitude of the cell is smaller than the visibility alti-
tude and if it’s true the value of P is changed with the 
current value and the cell is visible at the visibility alti-
tude. 

n
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Figure 2. Scheme of the coverage algorithm. 
 

These 3 steps are applied to the whole coverage area 
of the resource along the directions whose choice is ex-
plained in the following sections. For this reason it’s 
necessary to insert a cycle in this evaluation so that it is 
applied to every ray derived from the angular step chosen. 
Moreover it’s necessary to cover the holes between two 
adjacent rays.  

The Figure 3 represents the way we used to reduce the 
coverage of a resource characterized by a coverage ray R. 

The angle α is the angle formed by the ray along 
which we are evaluating the coverage and the x axis and 
it is equal to the angular step. In Figure 3 it is possible to 
see that the projection on the axis of the considered ray is 
proportional to the sine and cosine of the angular step. 

The algorithm along a ray stops when the sum of the 
increments is greater than the projection of the point on 
the axis. The mentioned values are equal to R*cos α and 
R*sin α, as shown in Figure 4.  

To cover the not analysed cells between two rays we 
use an algorithm very conservative that penalizes the 
coverage but in this way we are sure of the visibility of 
the cells that are not evaluated. The procedure is based 
on the memorization of the positions of the visible cells 
of the rays we took into consideration: after memorizing 
the positions of two adjacent rays, the cells between the 
two rays are considered visible. The final effect is the 
one shown in Figure 5. It’s evident that the more little 
the angular step is and the more refined the calculus of 
the coverage is, even if this implies an increase of com-
putation time due to the increase of the number of opera-
tions which must be executed. A solution is represented 
by the use of a large angular step in the first generations, 
to reduce it and to refine the solution in a second time. 
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Figure 3. Scheme of resource’s coverage. 
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Figure 4. Increments on the rays. 
 

Ray 4 

Ray 3 

Ray 2 
Ray 1 

x 

y 

 

Figure 5. Coverage of the holes. 

3. Spatial Resources Allocation Genetic  
Algorithm 

Genetic algorithms are considered wide range numerical 
optimisation methods, which use the natural processes of 
evolution and genetic recombination. Thanks to their 
versatility, they can be used in different application fields 
[10-38]. 

The algorithms encode each parameters of the problem 
to be optimised into a proper sequence (where the alpha-
bet used is generally binary) called a gene, and combine 
the different genes to constitute a chromosome. A proper 
set of chromosomes, called population, undergoes the 
Darwinian processes of natural selection, mating and 
mutation, creating new generations, until it reaches the 
final optimal solution under the selective pressure of the 
desired fitness function. 

GA optimisers, therefore, operate according to the fol-
lowing nine points: 

1) Encoding the solution parameters as genes; 
2) Creation of chromosomes as strings of genes; 
3) Initialisation of a starting population; 
4) Evaluation and assignment of fitness values to the 

individuals of the population; 
5) Reproduction by means of fitness-weighted selec-

tion of individuals belonging to the population; 
6) Recombination to produce recombined members; 
7) Mutation on the recombined members to produce 

the members of the next generation;  
8) Evaluation and assignment of fitness values to the 

individuals of the next generation; 
9) Convergence check. 
The coding is a mapping from the parameter space to 

the chromosome space and it transforms the set of pa-
rameters, which is generally composed by real numbers, 
in a string characterized by a finite length. The parameters 
are coded into genes of the chromosome that allow the GA 
to evolve independently of the parameters themselves and 
therefore of the solution space.  

Once created the chromosomes it is necessary to 
choose the number of them which composes the initial 
population. This number strongly influences the effi-
ciency of the algorithm in finding the optimal solution: a 
high number provides a better sampling of the solution 
space but slows the convergence.  

Fitness function, or cost function, or object function 
provides a measure of the goodness of a given chromo-
some and therefore the goodness of an individual within 
a population. Since the fitness function acts on the pa-
rameters themselves, it is necessary to decode the genes 
composing a given chromosome to calculate the fitness 
function of a certain individual of the population. 

The reproduction takes place utilising a proper selec-
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4. Sensor Models and Object Function tion strategy which uses the fitness function to choose a 
certain number of good candidates. The individuals are 
assigned a space of a roulette wheel that is proportional 
to their fitness: the higher the fitness, the larger is the 
space assigned on the wheel and the higher is the prob-
ability to be selected at every wheel tournament. The 
tournament process is repeated until a reproduced popu-
lation of N individuals is formed. 

4.1. Description of the Fitness Function 

The solution’s scheme is shown in Figure 7. 
The first step to do to solve the considered problem is 

to find a good coding for the sensors. In this paper sen-
sors are modelled by four parameters: two for the posi-
tion (coordinates X and Y); one for the length of the ray 
R of circular coverage diagram to consider two kind of 
different sensors; one parameter that tells us if that sensor 
is effectively active on the solution grid. Naturally a lot 
of parameters can be added to describe a sensor but this 
is not in the scope of the present paper that is to find a 
first level solution to the placement of territorial TLC 
resources for multipurpose services. 

The recombination process selects at random two in-
dividuals of the reproduced population, called parents, 
crossing them to generate two new individuals called 
children. The simplest technique is represented by the 
single-point crossover, where, if the crossover probabil-
ity overcome a fixed threshold, a random location in the 
parent’s chromosome is selected and the portion of the 
chromosome preceding the selected point is copied from 
parent A to child A, and from parent B to child B, while 
the portion of chromosome of parent A following the 
random selected point is placed in the corresponding 
positions in child B, and vice versa for the remaining 
portion of parent B chromosome.  

It’s necessary to find an objective-function that evalu-
ates a solution’s goodness by the sensor’s model. In this 
case two terms are selected, the first relative to the per-
centage of coverage of the assigned region and the sec-
ond relative to the cost of the resources necessary to ob-
tain that coverage. Qualitatively this function has the 
form: Fitness = f (coverage, resources’ cost). If the crossover probability is below a fixed threshold, 

the whole chromosome of parent A is copied into child A, 
and the same happens for parent B and child B. The 
crossover is useful to rearrange genes to produce better 
combinations of them and therefore more fit individuals. 
The recombination process has shown to be very impor-
tant and it has been found that it should be applied with a 
probability varying between 0.6 and 0.8 to obtain the best 
results. 

In general it’s necessary to remind that resources could 
be of different kind; they can be different from each oth-
er by their performances and/or their coverage area 
(volume), so they can be modelled with different cover-
age rays. 

In the hypothesis of minimizing the objective function, 
it’s necessary take care not of the coverage percentage 
but of its complement, that is to say the uncovered per-
centage of the solution grid. After these considerations, 
in the hypothesis of considering two kind of resources 
characterized by different coverage areas, the objective 
function is: 

The mutation is used to survey parts of the solution 
space that are not represented by the current population. 
If the mutation probability overcomes a fixed threshold, 
an element in the string composing the chromosome is 
chosen at random and it is changed from 1 to 0 or vice 
versa, depending of its initial value. To obtain good re-
sults, it has been shown that mutations must occur with a 
low probability varying between 0.01 and 0.1. The op-
erative scheme of a GA iteration is shown in Figure 6. 

 1 1 2 21
tot

F n c n c
A

 
 

    
 

       (4) 

where: 
 Atot = grid’s total area 
 Δ is the covered area after the resources’ positioning The converge check can use different criteria such as 

the absence of further improvements, the reaching of the 
desired goal or the reaching of a fixed maximum number 
of generations. 

 n1 and n2 are respectively the number of the active 
resources with coverage ray R1 and the number of ac-
tive resources with coverage ray R2. 

 

 

Figure 6. Operative scheme of a GA iteration.   
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Figure 7. Solution’s scheme. 
 
 c1 and c2 are factors associated to the resources that 

represent their cost. 
 α and β are coefficients that allow to weigh properly 

the objective-function’s terms. Their evaluation is il-
lustrated in the following. 

In this case α and β are estimated by giving the condi-
tion that a resource should be added in the grid if it gives 
a contribution to the coverage at least equal to a percent-
age δ of its own coverage capability.  

These coefficients can be estimated by solving the sys-
tem below: 

   
   

1 2 1 1 2

1 2 2 1 2

, , , 1, (5a)

, , , , 1 (5b)
sensor

sensor

F n n F A n n

F n n F A n n




      
      

 

These equations give the equality between the objec-
tive-function’s value and the value of itself calculated by 
adding a new resource that gives a contribute to the total 
coverage percentage with a δ percentage of its own cov-
erage capability. By this way it is possible to estimate the 
values of α and β that allow to eliminate resources which 
work under the minimum percentage. So it’s possible to 
reach the system below: 

 

 

 

1
1 1 2 2 1 1 2 2

1
1 1 2 2 1 1 2 2

1 1 1

1 1 1 (6b)

sensor

tot tot

sensor

tot tot

A
n c n c n c n c

A A

A
n c n c n c n c

A A


     


     

      
           

    


                
   

(6a)

 

Solving this system it’s possible to obtain: 

1
1 1 1 2 2 1 1 2 2

1
1 1 2 2 2 1 1 2 2

(7a)

(7b)

sensor

tot tot tot

sensor

tot tot tot

A
n c c n c n c n c

A A A

A
n c n c c n c n c

A A A


         


         

          



          
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1 1
1

1

112
2

2 2

(8a)

(8b)

sensor sensor

tot tot

sensorsensor

sensortot

A A
c

A c A

AcA
c

c AA

    


 

       
    

      

 

 
From these last equations it is possible to draw two 

important considerations. The first one is that the values 
of α and β aren’t bounded to a specific number so it’s 
possible to choose arbitrary values to be assigned to one 
of them and obtain the value of the other one by Equation 
(8a). The second consideration comes from the analysis 
of Equation (8b) where it’s possible to see how the re-
source’s cost is directly proportional to the coverage area 
of the resource itself. To calculate effective values of 
these parameters it’s necessary to express the objec-
tive-function with other parameters. 

Dividing all the terms of Equation (8b) by the total 
area we obtain: 

2
1 1π 1totc R A N 

2
2 2π 1totc R A N  2              (9b) 

where N1 and N2 are respectively the maximum number 
of resources with ray R1 and the maximum number of 
resources with ray R2. Replacing these values in Equa-
tion (8a) and (8b) we obtain: 

2
1
2
1

π

π
tot

tot

A R

A R


               (10) 

As it can be seen, the value of β depends on the mini-
mum percentage δ that the resources must have to remain 
placed in the grid. Considering a real working percentage 
of the order of 40%, we obtain δ = 0.4. Replacing this 
value in the previous equation we have: 

1             (9a) 0.4                    (11) 
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At this point it is necessary to calculate the value of α 
to find the final values of these parameters. The objec-
tive-function’s values must be included in a range [0, 1], 
where 1 represents the worst case and 0 the best case in 
which the 100% of coverage and the minimum use of 
resources is reached. Considering the condition for the 
worst case, it’s possible to estimate the value of α. In fact, 
in the worst case, no resource is placed on the grid so the 
coverage percentage is 0. Replacing these values in the 
objective-function we obtain: 

1 2

0
1 0 0 1

tot

c c
A

  
 
      

 
1

13a

    (12) 

Finally the values of α and β are: 

1 (

0.4 (13b)





 

)
 

Replacing these values in Equation (4) we obtain: 

1 2
1 2

1
1 0.4 0.4

tot

F n n
1

A N N

    
       

   





   (14) 

Analysing this function it’s possible to draw the con-
siderations below: 
 if no resources are placed on the grid (n1 = 0 and n2 = 

0), the value of equation (14) is equal to 1. 
 if the coverage area is 100% it’s difficult to establish 

which is the fitness value. In this case the first term is 
equal to 0 while the sum of the other two has a value 
that is impossible to know a priori. If we consider that 
using all the resources the fitness value is equal to 0.8, 
it’s simple to understand that in the case of total cov-
erage the fitness value is lesser than this number.  

 how it can be seen, the resources used to cover the 
grid are weighed with the inverse of their maximum 
number so directly with the square of their own cov-
erage ray: a resource with longer coverage ray 
weights in a more negative way on the fitness value 
with respect to a resource with shorter coverage ray.  

This function allows the algorithm to eliminate re-
sources which have been placed on the grid but that be-
cause of superimpositions or because of presence of ob-
stacles can’t give a contribute to the coverage that is at 
least equal to the 40% of their own coverage capability 
and the single terms weight on the final fitness value is 
now calculated. Starting from the first element, it’s pos-
sible to estimate how much an increase of the coverage 
percentage of 1% weighs on the fitness value. To esti-
mate it, it’s necessary to calculate the difference between 
the first term with no coverage and the first term with 1% 
of coverage: 

100 1
1 1 1

100
tot tot

tot

A A

A


     0.01      (15) 

An increase of one point of percentage reflects on the 
fitness value with a decrease equal to 0.01. 

To estimate the weight of the other two terms it’s suf-
ficient consider only one kind of resource. One resource 
with coverage ray R1 weighs on the fitness value with a 
value W1 equal to: 

2
1

1

π

tot

R
W

A
                 (16) 

so its contribution, as just said, depends on its ray.  
Similarly for a resource with coverage ray R2 is: 

2
2

2

π

tot

R
W

A
                 (17) 

Comparing Equation (16) and Equation (17) it is pos-
sible to see that adding one resource with coverage ray R1 
weighs more than adding a resource with coverage ray 
R2. 

4.2. Places Choice 

To complete this work is possible to consider the sites 
that can be utilized to place the resources. By an a-priori 
analysis of the grid it is possible to find those sites that 
are non-reachable or that are occupied by other resources 
previously placed. After doing this analysis, a matrix is 
generated. The matrix is as big as the grid to cover. The 
sites that can’t be used are marked with a logical 0. If a 
resource is placed on a 0, the related solution is deleted 
by a penalization of its fitness value. 

5. Performances and Results 

5.1. Evaluation Time 

In this section an approximation of the computation time 
is done, to estimate the time necessary to obtain a con-
figuration closer to a real situation. The first considera-
tion to do is that the most of the time is spent by the ge-
netic algorithm to evaluate the objective-function and 
above all to evaluate the resource’s coverage; the classic 
genetic operations such as coding, selection, crossover 
and mutation can be considered instantaneous so they 
aren’t considered in this calculus. Therefore we consider 
only the function that evaluates the coverage and it’s 
possible to consider the calculus of a single cell as a 
unit-operation. The number of the cells that is evaluated 
depends on the resource’s ray and on the angular and 
radial steps that are chosen for the evaluation. It’s neces-
sary to consider that this number could be smaller be-
cause of the obstacles on the grid. The number of 
unit-operation (Nop) for the evaluation of a single re-
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source is: 
2π

radialstep angular stepopN 


R        (18) 

It is possible to see that the number of unit-operations 
depends directly on the ray and inversely on the radial 
step (the step on which we move along a radial direction) 
and on the angular step (angular distance between two 
subsequent radials). In this case we used a radial step 
equal to 1 for the coverage’s estimation. 

Now it is necessary to insert this calculus in the con-
text of the genetic algorithm in which every coverage’s 
calculus of a resource is applied to every active resource 
for every chromosome of every generation. Starting with 
considering active resources in a chromosome, we have 
the number of unit-operations for every chromosome 
(Nopch): 

1 1 2

2π 2π

gular step angular stepopchN n R n   
an

2R  (19) 

where n1 and n2 are respectively the number of active 
resources with coverage ray R1 and active resources with 
coverage ray R2 in a single chromosome. To obtain the 
number of unit-operation in a generation (Nopgen) it’s 
necessary to sum this quantity for every chromosome in a 
generation: 

totalnumber of
chromosomes

1 1
1

2 2

2π

angular step

2π

angular step

j

j

opgen
j

N n

n R




 





 R
      (20) 

where and  are respectively the number of active  1ij
n 2ij

n

resources with coverage ray R1 and the number of active 
resources with coverage ray R2 in the chromosome j.  

Now, to obtain the total number of unit-operations in a 
cycle (Nopc), it’s necessary to execute the sum on every 
generation: 

total number of
chromosomesgenerations

1
1 1

2 2

2π

angular step

2π
     

angular step

ij

ij

opc
i j

N n

n R

 

   
 

 



1R

  (21) 

where  and  are respectively the number of active  1ij
n 2ij

n

resources with coverage ray R1 and the number of active 
resources with coverage ray R2 in the j chromosome and 
in the i generation.  

How we can see, the number of operations that it’s 
necessary to do is directly proportional to the ray of the 

resource and inversely proportional to the chosen angular 
step. Naturally this number depends on the number of 
chromosomes and generations. If we want to reduce the 
calculus time we have to reduce the generations’ number, 
the chromosomes’ number, the resource’s ray or we have 
to increase the radial or angular step. Each operation 
makes the algorithm faster but has a negative effect on 
the final solution so it’s necessary to find the right com-
promise between computation time and solution’s good-
ness.  

Now we analyse the curve that represents the time 
trend as a function of the grid to explore. 

We consider a starting grid of n*n in which are placed 
resources with area A1 and A2. The initial number of the 
resources is given by: 

2
1N n A 1                (22a) 

2
2N n A 2                (22b) 

If we increase the grid side we can have two different 
cases: in the first case the ratio between total area and 
resource area remains equal while in the second one the 
resources area remain equal.  

For the first case we want to double the side grid ob-
taining a 2n * 2n grid. The total area of the grid is 4n2. 

If we increase not only the side grid but also the re-
sources areas, keeping constant the number of initial re-
sources, we obtain: 

2
1 4N n A1
                 (23) 

where 1N   is the number of resources with area 1A .  
This quantity must be equal to equation (22a) and 

Equation (22b) because we supposed that the ratio be-
tween resource area and total area is equal, keeping un-
changed the number of initial resources, so it must be 

1 14A A  . Similarly, for the other resource, it’s 2 24A A  . 
With this argument it’s simple to understand that re-
sources areas are multiplied by four as the number evalu-
ated cells and the number of unit-operations. Analysing 
the second case, the resources areas are constant while 
the grid side is multiplied for a factor two. In this situa-
tion the number of initial resources increases according 
to the equations: 

2
1 14 4N n A N   1            (24a) 

2
2 24 4N n A N   2            (24b) 

where 1N   is the number of initial resources in the grid 
with side 2n. How we can see in this case, the number of 
initial resources is multiplied by four increasing in the 
same way the number of unit-operations. 

Summarizing, in both of cases if the grid side is dupli-
cated, the number of unit-operations is multiplied for 
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four. The same is valid for every factor we multiplied the 
grid side: the number of unit-operations, and therefore 
the computational time, is multiplied by the square of 
that factor according to the equation below: 

 2

2 2 1T L L 1T               (25) 

where T1 is the time spent for evaluating the starting grid, 
L1 is the starting grid side, L2 is the new grid side and T2 
is the time spent to evaluate the new grid.  
Evaluation time increases in quadratic way with respect 
to the expansion grid side factor and is characterized by 
the trend shown in Figure 8. 

In this graphic two points are signed: the first is the 
point that represents the grid configuration we used in the 
simulations and we use it as a point of reference. The 
second point is that one that represents a situation closer 
to reality in which the expansion grid side factor is 80. In 
this last case the computation time is equal about to 9 
hours, as it is possible to see in the graphic. 

5.2. Convergence of Solutions 

Solution convergence is different depending on the pa-
rameters’ configuration that is used. In Figure 9 fitness 
graphics as a function of generation number for different 
cases we studied (Table 1) are shown.  

It is possible to see that trends are very different from 
each other: some of them converge very early while other 
configurations don’t converge in the first 100 generations. 
It’s possible to affirm that every configuration reach the 
same final result but some of them reach it faster than 
others so these configurations are the best because they 
allow us to decrease evaluation time. For this study we 
considered 500 generations but for some configurations it 
is possible to decrease the number of generations up to 
250 halving evaluation time, so this figure considers only 
the first 250 generations. 

An example of solution is shown in Figure 10. 

6. Numerical Results 

In Table I the mean values of all the studied situations 
are reported so it is possible make a comparison between 
each other. The first 10 situations are evaluated without 
obstacles on the grid to test and verify the goodness of 
the genetic algorithm. The situations from 11 to 20 are 
evaluated considering the example DTED data shown in 
Figure 11. A 50 km * 50 km territory is considered; each 
cell is 1 km * 1 km and the angular step for coverage 
verification is 30˚. 

In the first part of the table the values extracted at the 
generation number 250 are reported while in the second 
part the values extracted at the end of the genetic cycle 
are reported. 

 

Figure 8. Trend of the evaluation time according to the 
grid’s expansion factor using a 2800 MHz PC, Intel CPU 
Pentium IV. 
 

 

Figure 9. First 250 generations of the most interesting cases. 
 

 

Figure 10. Example of solution: coverage of a [50 km * 50 
km] grid with a 30˚ angular step using R1 = 10 km and R2 = 

 km, case 18 of table 1, grid step = 1 km. 4   
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Figure 11. 3D-DTED level 0 used for simulations. 
 

Table 1. Numerical results of different cases. How we can see from this table, every configuration is 
characterized by similar performances about the final 
coverage percentage and the final fitness value in the two 
parts of the table. The difference between them is repre-
sented by the number of generations necessary to reach 
the final solution: in some cases the configurations use a 
low number of generations so they reach the final solu-
tion in a shorter time with respect to other configurations. 

Case 
Final 
Gen. 

Final 
Fitness 

Final  
coverage (%) 

# R1 10 Km # R2 4 Km

1 398 0.305 89.49 6.05 10.65 

2 396 0.302 90.61 6.15 10.95 

3 436 0.303 90.10 5.95 11.65 

4 482 0.303 90.49 6 11.85 

5 493 0.302 89.64 5.6 13.25 

6 494 0.300 90.66 5.85 12.45 

7 481 0.301 89.62 5.65 12.8 

8 395 0.313 88.99 6.7 6.25 

9 489 0.306 90.38 6.95 5.9 

10 446 0.307 92.91 7.4 5.65 

11 475 0.384 79.45 6.8 10.8 

12 423 0.388 80.53 6.8 12.55 

13 489 0.369 81.34 5.3 22.2 

14 497 0.360 80.50 3.4 30.55 

15 385 0.397 77.77 6.95 10.55 

16 347 0.394 78.88 6.5 17.7 

17 408 0.390 79.69 6.95 11.25 

18 406 0.389 79.30 6.75 11.8 

19 405 0.444 77.57 7.1 8.6 

20 402 0.414 78.10 8.64 2.6 

7. Conclusions 

At the end of this work some considerations are possible. 
The first is that the genetic algorithm shown its strength 
of application in the resolution of complex problems 
such as the one we considered. It can solve real problems 
because it can consider all their practical characteristics 
(DTED, resources with different coverage ray R, etc.). 

The algorithm has shown to be extremely flexible and 
it can be used to solve other complex problems. 

This work shows that an efficient automation of the 
process of territorial resources placement is possible.  

The resolution of the problem by the genetic algorithm 
gives good results: the genetic algorithm is very adapt-
able to this problem. The algorithm has demonstrated to 
be useful since it can find always good solutions. The 
important consideration to draw is that the goodness of 
the solutions depends on the variations of the configura-
tions but it’s important to remember that best solutions 
require more time to be found so it’s necessary to find a 
compromise between solutions goodness and computa-
tion time.  



Optimal Territorial Resources Placement for Multipurpose Wireless Services Using Genetic Algorithms 194 

In this work different implementations of the algo-
rithm have been studied to try to improve its perform-
ances. The main implementations were directed to insert 
an a-priori knowledge: the reduction of the number of 
resources with coverage ray R2 and the insertion of a 
non-random initial population has shown a significant 
importance in the improvement of the results. Not all the 
simulations gave optimal solutions (such as the different 
kind of crossover and mutation that were implemented 
ad-hoc).  

For future work and above all for future study of this 
problem, it’s possible to extend this work in a wider re-
gion using more efficient techniques to reduce the evalu-
ation time such as the memorization of the visibility of 
the cells. 
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