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ABSTRACT 

The realization of security wired network is very critical when the network itself must be installed in an environment 
full of restrictions and constrains such as historical palaces, characterized by unique architectural features. The purpose 
of this paper is to illustrate an advanced installation design technique of security wired network based on genetic algo- 
rithm optimisation that is capable of ensuring high performances of the network itself and significant reduction of the 
costs. The same technique can be extended to safety system such as fire signalling. 
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1. Introduction 

Thanks to the continuous technology development it is 
possible to realize new varieties of devices, sensors and 
other powerful instruments which allow to implement 
advanced safety/security systems that show all their 
power when they are properly integrated in higher level 
systems [1-3]. 

The integrated safety/security systems allows the per- 
sonnel to check directly each zone of the protected build- 
ing or infrastructure and to be immediately informed if a 
dangerous event takes place. 

The integrated systems are generally divided into safety/ 
security sub-systems so that each sub-system is capable 
of working even in the case of malfunctioning of the 
other systems. 

In this way an integrated system is capable of per- 
forming a plenty of advanced functionalities that prevent 
dangerous situations. 

Each sub-system use a proper wired or wireless net- 
work to connect the control panel to the sensors. 

It is well known that wired network offers, generally, a 
higher degree of security due to the fact that the trans- 
mitted information is sent in a confined way through 
copper or optical fibre cable while wireless transmission 
spread through the space and can be easily intercepted. 

In historical buildings, where a plenty of pictures are 
present on the wall and on the ceiling, it is not so easy to 
find passages for cables and this represents a consider- 
able problem from the preservation of cultural heritage 

point of view. 
The purpose of this paper is to illustrate an optimal de- 

sign procedure for safety/security communication net- 
works that, thanks to Genetic Algorithms (GAs) [4-9], is 
capable of reaching the desired goal of preserving the 
architecture of building characterized by installation con- 
strains, such as the historical one, and of reducing the cost 
of installation, ensuring a high level of benefit/cost ratio. 

2. The Safety/Security Installations 

All the control panels related to the safety/security in- 
stallations (fire signalling, anti-intrusion, video surveil- 
lance) use, generally, a loop communication bus with 
hubs. Each control panel communicates with the supervi- 
sion consoles. The field sensors are connected to the 
control panel through the hubs and the loop bus while the 
elements that are located closer to the control panel are 
directly connected to it by means of a cable. 

The block diagrams of the used safety/security instal- 
lations are shown in Figures 1-3. 

The choice of the loop bus with hubs is generally 
made after a proper cost/benefit analysis. In fact the 
mentioned system ensures to transmit all the information 
from the sensors to the control panel and vice versa using 
only a wired bus composed by two or four thin copper 
wires or by a thin optical fibre. 

In this kind of configuration the single sensors are not 
connected directly with the related control panels, in- 
creasing the amount of wire used for the installation with         
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Figure 1. Block diagram of the fire signalling installation. 
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Figure 2. Block diagram of the intrusion detection installation. 
 
a consequent increase of the cost of the materials and of 
the human work, and reducing the reliability of the whole 
installation due to the high number of connections. The 
sensors are therefore connected directly with the hubs, 

that are local devices which transmit the safety/security 
information received from the sensors to the control 
panel and vice versa, using a 2 - 4 copper wires or optical 
ibre bus. f  
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Figure 3. Block diagram of the video surveillance installation. 
 
3. The Communication Bus of the 

Installations 

The use of a loop bus increases the reliability level of 
each single installation since, in the event of voluntary 
interruption (due, for example, to sabotage) or not vol- 
untary interruption of it, the data exchanged with the 
hubs towards a given direction can be exchanged using 
the other direction. 

The fire signalling installation uses sensors that are 
directly connected to the bus while the intrusion detec- 
tion installation uses sensors that are connected to the bus 
using the hubs.  

The hubs exchange continuously data with the field 
sensors, using a proper security protocol, verifying their 
functionality, and sending proper signalling messages to 
the control panel in the case of malfunctioning. The used 
installation architecture ensures high performance of the 
sensors efficiency.  

In the event of alarm the system is capable of activat- 
ing the safety/security procedures in a short time. 

4. Genetic Optimisation of the Sensors 
Interconnections 

The number of hubs, their position and the number of 

sensors connected to each of them represents a typical 
optimisation problem where it is necessary to reduce as 
more as possible the installation costs, reducing as more 
as possible the number of hubs and positioning correctly 
them so that the amount of wire necessary to connect all 
the sensors to them is the shorter one. 
The input data are represented by: 

1) position of the sensors; 
2) position of the hubs; 
3) sensor/hub connection cost; 
4) hub cost. 
The connection conditions are represented by:  
1) maximum number of sensors that can be connected 

to each single hub; 
2) maximum distance between two hubs; 
3) reduction as more as possible of the number of hubs; 
4) maximum length of the bus. 
The scheme of the design optimization problem is 

shown in Figure 4. 
In Figure 5, an example of sensors distribution (a) and 

two examples of possible connections to the hubs (b, c) 
are shown. How it is possible to see, at the same sensors 
distribution can correspond different schemes of hub 
connection, characterized by different costs as a function 
of the length of the connections hub-sensor and the 
number of hubs. 
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Figure 4. Scheme of the design optimisation problem. 
 

This problem can be solved using evolutionary strate- 
gies such as the one offered by the Genetic Algorithms 
(GAs) and evolutionary computation [4-9]. 

Genetic algorithms offer the great advantage of evolv-
ing their behaviour to match with the behaviour of the 
final users, using a mechanism that is very similar to the 
one used by nature. Different genetic algorithm can be 
used to achieve the desired purpose, each characterised 
by peculiar features. 

Genetic algorithms are considered wide range nu- 
merical optimisation methods, which use the natural pro- 
cesses of evolution and genetic recombination. Thanks to 
their versatility, they can be used in different application 
fields. 

GAs are particularly useful when the goal is to find an 
approximate global minimum in a high-dimension, multi- 
modal function domain, in a near-optimal manner. Un- 
like the most optimization methods, they can easily han- 
dle discontinuous and non-differentiable functions. 

The algorithms encode each parameters of the problem 
to be optimised into a proper sequence (where the alpha- 
bet used is generally binary) called a gene, and combine 
the different genes to constitute a chromosome. A proper 
set of chromosomes, called population, undergoes the 
Darwinian processes of natural selection, mating and 
mutation, creating new generations, until it reaches the 
final optimal solution under the selective pressure of the 
desired fitness function. 

GA optimisers, therefore, operate according to the 

following nine points: 
1) encoding the solution parameters as genes; 
2) creation of chromosomes as strings of genes; 
3) initialisation of a starting population; 
4) evaluation and assignment of fitness values to the 

individuals of the population; 
5) reproduction by means of fitness-weighted selection 

of individuals belonging to the population; 
6) recombination to produce recombined members; 
7) mutation on the recombined members to produce 

the members of the next generation; 
8) evaluation and assignment of fitness values to the 

individuals of the next generation; 
9) convergence check. 
The coding is a mapping from the parameters space to 

the chromosomes space and it transforms the set of pa- 
rameters, which is generally composed by real numbers, 
in a string characterized by a finite length. The parame- 
ters are coded into genes of the chromosome that allows 
the GA to evolve independently of the parameters them- 
selves and therefore of the solution space. 

Once created the chromosomes it is necessary to 
choose the number of them which composes the initial 
population. This number strongly influences the effi- 
ciency of the algorithm in finding the optimal solution: a 
high number provides a better sampling of the solution 
space but slows the convergence. A good compromise 
consists in choosing a number of chromosomes varying 
between 5 and 10 times the number of bits in a chromo- 
somes, even if in the most of situations, it is sufficient to 
use a population of 80 - 100 chromosomes and that does 
not depend of the length of the chromosome itself. The 
initial population can be chosen at random or it can be 
properly biased according to specific features of the con- 
sidered problem. 

Fitness function, or cost function, or object function 
provides a measure of the goodness of a given chromo- 
some and therefore the goodness of an individual within 
a population. Since the fitness function acts on the pa- 
rameters themselves, it is necessary to decode the genes 
composing a given chromosome to calculate the fitness 
function of a certain individual of the population. 

The reproduction takes place utilising a proper selec- 
tion strategy which uses the fitness function to choose a 
certain number of good candidates. The individuals are 
assigned a space of a roulette wheel that is proportional 
to their fitness: the higher the fitness, the larger is the 
space assigned on the wheel and the higher is the prob- 
ability to be selected at every wheel tournament. The 
tournament process is repeated until a reproduced popu- 
lation of N individuals is formed. 

The recombination process selects at random two in- 
dividuals of the reproduced population, called parents, 
crossing them to generate two new individuals called  
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Figure 5. Example of sensors distribution (a) and two examples (b, c) of possible connections to the hubs. Sensors are indi- 
cated with “S” while hubs are indicated with “H”. 
 

The mutation is used to survey parts of the solution 
space that are not represented by the current population. 
If the mutation probability overcomes a fixed threshold, 
an element in the string composing the chromosome is 
chosen at random and it is changed from 1 to 0 or vice 
versa, depending of its initial value. To obtain good re- 
sults, it has been shown that mutations must occur with a 
low probability varying between 0.01 and 0.1. 

children. The simplest technique is represented by the 
single-point crossover, where, if the crossover probabil- 
ity overcome a fixed threshold, a random location in the 
parent’s chromosome is selected and the portion of the 
chromosome preceding the selected point is copied from 
parent A to child A, and from parent B to child B, while 
the portion of chromosome of parent A following the 
random selected point is placed in the corresponding 
positions in child B, and vice versa for the remaining 
portion of parent B chromosome.  

The converge check can use different criteria such as 
the absence of further improvements, the reaching of the 
desired goal or the reaching of a fixed maximum number 
of generations. 

If the crossover probability is below a fixed threshold, 
the whole chromosome of parent A is copied into child A, 
and the same happens for parent B and child B. The 
crossover is useful to rearrange genes to produce better 
combinations of them and therefore more fitting indi- 
viduals. The recombination process has shown to be very 
important and it has been found that it should be applied 
with a probability varying between 0.6 and 0.8 to obtain 
the best results. 

In our case it has been studied a very interesting ge- 
netic design solution that ensures cost reduction up to 
70%. 

Genetic Algorithms have been intensively used for 
security problems [10-19] with particular reference to 
intrusion detection in network but they haven’t ever been 
used for this kind of application. 
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It is now necessary to codify our design problem in a 
simple and efficient genetic problem. 

First of all, once positioned the sensors on the plant, 
respecting all the safety/security goals, it is necessary to 
position the hubs and to decide at which hub must be 
connected each sensor. The number of hubs that must be 
used depends on the number of inputs of the hub them- 
selves. A good choice consist in choosing a number of 
hubs so that the total of available inputs is almost 200% 
greater than the number of sensors, to allow the genetic 
algorithm to operate a better optimisation of the connec- 
tions. 

Once individuated the positions where it is possible to 
install the hub (this does not means that it is necessary to 
install an hub in that position, since it’s installation need 
depends on the optimisation process), it is necessary to 
calculate the distance between each sensors and each hub 
and generate the so called design connection table where 
all the sensor-hub distances are properly reported. Since 
some connections are not possible, due to architectural 
restrictions that are particularly felt in historical buildings, 
the related situation is indicated with a X in the related 
position of the table. In Table 1 an example of a 11 sen- 
sors-3 hubs design table is shown (a 6 inputs hub is sup- 
posed to be used so that the availability of 18 inputs is 
guaranteed). 

Once derived the design connection table it is neces- 
sary to proceed with the codification of the design prob- 
lem in a simple and efficient genetic problem. 

The easier way to do this is to use a chromosome 
composed by a number of genes that is equal to the 
number of sensors: this means that the chromosome is 

 
Table 1. Example of a design connection table. A X means a 
not allowed connection between the sensor and the hub, 
while a number indicates the distance between the sensor 
and the hub expressed in meters. 

 Hub 1 Hub 2 Hub 3 

Sensor 1 4 X 20 

Sensor 2 X 3 24 

Sensor 3 7 4 2 

Sensor 4 X 7 5 

Sensor 5 2 5 X 

Sensor 6 9 1 X 

Sensor 7 14 7 3 

Sensor 8 18 X X 

Sensor 9 X 4 15 

Sensor 10 X 8 X 

Sensor 11 6 X 5 

composed by homogeneous genes. Each gene, related to 
a specific sensor, codifies the number of the hub where 
the sensor is connected: for this reason the value of this 
gene varies between 1 and the maximum number of hubs 

. The number of the effective used hubs can ob- 
viously be lesser than the maximum number of hubs 
since it depends on the found optimisation solution. The 
number of hubs depends on the number NI of their inputs 
and the number NS of sensor to be connected. The mini- 
mum number  of hubs necessary is equal to: 

MAX
HN

MIN
HN

  1S IInt N N                (1) 

where Int() is the integer operator, that is an operator 
which rounds the argument () to the nearest integer to- 
wards infinity. 

Due to the design vincula, it is not possible to reach 
this number and it is necessary to consider a proper 
multiplicative coefficient c so that the maximum  
of hubs is equal to c . Good results are obtained if 
c is equal to 2. 

MAX
HN

MIN
HN

To allow the maximum efficiency of the genetic proc- 
ess, the sensor/hub connections, represented as a number 
into the genes, are coded with a binary alphabet so that in 
the presence of the crossing and the mutation operation, 
the data can be exchanged at the inter-gene level more 
that at the intra-gene level. If  is the number of 
hubs that ought to be used (according to the criteria ex- 
pressed above) the minimum number of bits necessary to 
codify  can be demonstrated to be: 

MAX
HN

MAX
HN

  XMA
2In log 1HN               (2) 

In Table 2 the codification of the gene is shown. 
The fitness function F(C) (where C is the generic 

chromosome) represents the cost of the installation and it 
is composed by the cost of wire installation and by the 
cost of hubs: 

  cos cosm C H HCF C t L t N             (3) 

being costm the cost per meter of installation, LC the total 
length of the installation of the solution represented by 
the chromosome C, costH the cost of each hub, NHC the 
number of hubs of the solution represented by the chro- 
mosome C. Therefore the system evolves to reduce, as 
more as possibile, the fitness function, or cost function, 
represented by Equation (3). 

Once defined the chromosome as shown in Table 2, 
an initial population of 80 - 100 chromosomes is ran-
domly generated and let evolve according to the genetic 
scheme shown in Figure 6. 

In Figure 7 the general scheme of encoding of the so-
lution parameters as genes of a chromosome is shown. 

In Figure 8 three significant examples of chromo- 
somes obtained during the evolution process are shown. 

The first chromosome represents the most efficient 
solution in term of shorter sum of connections between   

Copyright © 2012 SciRes.                                                                                   CN 



F. GARZIA  ET  AL. 

Copyright © 2012 SciRes.                                                                                   CN 

202 

 
Table 2. Details of the scheme of codification of the gene. 

 Gene Considered variable Variability range Variable type Number of Bits 

1 Sensor 1/hub connection MAX1 - HN  Integer   MAX

2log 1HInt N   

2 Sensor 2/hub connection MAX1 - HN  Integer   MAX

2log 1HInt N   

     

     

NS – 1 Sensor NS – 1/hub connection MAX1 - HN  Integer   MAX

2log 1HInt N   

Chromosome 

NS Sensor NS/hub connection MAX1 - HN  Integer   MAX

2log 1HInt N   

 

 

Figure 6. Base cycle of a genetic algorithm. 
 

 

Figure 7. Encoding of the solution parameters as genes of a chromosome. 
 

 

Figure 8. Three significant examples of chromosomes obtained during the genetic evolution process. 
 

The second chromosome represents the most efficient 
solution in term of both number of hubs (2) and shorter 

sensors and hubs (55 meters), as it is possible to verify 
from Table 1, using anyway all the three hubs. 
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sum of connections between sensors and hubs (67 me- 
ters): if the cost of the hub is higher than the cost of the 
difference of length of the connections (67 - 55 = 12 me- 
ters), this chromosome tends to extinct during the evolu- 
tion while the first chromosome tends to dominate and to 
become the most numerous of the final population. If the 
mentioned cost is lower an opposite situation takes place. 

The third chromosome represents a good solution in 
term of reduction of the sum of the length of connections 
with the only exception of genes 4 and 8 where the con- 
nections sensor 4—hub 1 and sensor 8—hub 2 are re- 
spectively attempted. Since these connections are not 
allowed, as it is possible to deduce from Table 1, this 
chromosome immediately extinct at the first fitness 
evaluation process, because of its inadequacy to repre- 
sent a valid solution for our problem. 

The used GA ensures to obtain the most optimised so- 
lution as a function of the input parameters. The opti- 
mised solution is generally found after a certain number 
of cycles, called generations: this number has demon- 
strated to vary with the number of sensors, as shown in 
Figure 9. 

The important result of this genetic design method is 
represented by the cost reduction. Different simulations 
related to different cost of wire installation and hub and 
to different real situations were made. In Figure 10, the 
cost reduction of the installation (in percentage) as a 
function of the number of sensors is shown. The cost 
used as a base to calculate the cost reduction is repre- 
sented by the more expensive solution, that is an initial 
number of hubs that is double with respect to the value 
expressed by Equation (1) and a connection scheme that 
is optimized, by means of another GA, to reach the 
maximum cost. 

It is interesting to note that the cost reduces with the 
number of sensors, that is the more complex is the in- 

 

 

Figure 9. Number of generations necessary to obtain the 
optimised solution as a function of the input sensors. 

 

Figure 10. Cost reduction of the installation (in percentage) 
as a function of the number of sensors. 
 
stallation and the greater is the cost reduction, since the 
GA optimisation is capable of showing all its efficiency 
on large scale. 

The full cost solution is represented by the initial use 
of a number of hubs that is the double of the minimal 
number, as explained before. 

5. Conclusions 

The realization of security fixed network is very critical 
when it must be installed in an environment full of re- 
strictions such as historical palaces, characterized by 
unique architectural features. 

In this paper it has been shown a system which was 
designed using a very advanced technique based on ge- 
netic algorithm optimisation. 

The proposed system has demonstrated to be able of 
ensuring high performances in term of high reduction of 
the installation cost, in particular way when the number 
of sensors is greater than 100, that is a normal condition 
in historical buildings. 

The same algorithm can be used in other kind of 
building where connection restrictions are present. 
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