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Abstract. A new transverse oscillatory behavior of spatial solitons in a second order material is presented.

It is based on the property of a soliton in a transverse Gaussian refractive index pro®le.
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1. Introduction

Spatial solitons are self-trapped optical beams that propagate without
changing their spatial shape, since the di�raction and the nonlinear refrac-
tion balance each other in a self-focusing medium (Zakharov and Shabat
1972).

Recently the possibility of achieving large nonlinear phase shift in the
parametric interaction of a fundamental frequency (FF) with its second
harmonic (SH) has attracted renewed interest (De Salvo et al. 1992).

In the SH generation (i.e. with no seed) a nonlinear phase shift of the FF
beam accompanied by small periodic conversion may be achieved by oper-
ation at large wavevector mismatches Dk � 2k1 ÿ k2 6� 0. The nonlinear
phase shift, proportional to Dk, a�ects each ®eld which has a non zero input.
(Re et al. 1995; D'Aguanno et al.)

Therefore for a SH generation process only FF beam undergoes nonlinear
phase shift which is also known as self-phase modulation process. When an
ampli®cation process occurs a ``cross phase modulation'' (XPM) is present:
each ®eld undergoes a phase modulation driven by the intensity of the other
®eld, therefore periodical conversion of energy becomes strongly a�ected by
the input intensity ratio of FF and SH ®elds (Fazio et al. 1998).

Recently an analysis of the cross phase modulation induced gain (Board-
man et al. 1997) has been performed under vectorial analysis of the coupled
FF-SH waves. These calculations analyze transverse modulation instability
of the plane-wave eigenstates in quadratically nonlinear media. It has been
shown that the gain curves are signi®cantly di�erent at low and high input
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power (FF power) because of the competition between birefringence and
cross phase modulation induced gain.

In this paper we study the behavior of a soliton beam in a second order
material in a planar waveguide , where z is the propagation direction and x is
the transverse one. In the plane x-z of the waveguide there is a transverse
distribution of refractive index that follows a Gaussian curve, and where the
initial position of the maximum of the intensity of the soliton (with respect to
x variable) is shifted with respect to the maximum of the index pro®le. In this
situation the beam is attracted towards the center of the index pro®le,
acquiring a certain velocity that allows it to pass this point and to continue to
move forward to the other side of the index pro®le, decreasing its velocity.
The behavior is similar to the case in which a third order material is used
(Aceves et al. 1988; Moloney and Adachihara 1990; Garzia et al. 1994;
Garzia et al. 1997) with the advantage that the case of a cascading process
absorption is avoided and therefore the threshold power is lower.

2. Transverse e�ect of a soliton beam in a gaussian shaped refractive index
pro®le

It is immediate to show that in a plane wave geometry the e.m. propagation
of the fundamental and of the second harmonic is described by the following
nonlinear couple of equations in the X -Z plane:

i
oA1

oZ
ÿ q1

oA1

oX
� 1

2k1

o2A1

oX 2
� KA2A�1 exp�iDkZ� � 0 (1a)

i
oA2

oZ
ÿ q2

oA2

oX
� 1

2k2

o2A2

oX 2
� KA2

1 exp�ÿiDkZ� � 0 (1b)

where the subscripts 1 and 2 refer to the fundamental and second harmonic
wave respectively, A1, A2 are the envelopes of the two waves, k1, k2 their
wavevectors,

Dk � 2k1 ÿ k2 is the wavevectors mismatch,

K � x0

c
2

ce0n2f �x0�ns�2x0�

 !1=2
v�2�eff

2

is the coupling constant, nf �w0�; ns�2x0� being the refractive indices at x0 and
2x0 respectively and q1; q2 the walk o� angles.

We suppose the beams to propagate in a transverse refractive index gra-
dient, that is:
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nf �x0� � n0f 1� Dnf �x�
ÿ � �2b�

ns�2x0� � n0s 1� Dns�x�� �; �2b�

where Dnf �x�; Dns�x� are proper spatial functions whose shape can be equal.
We also assume that a gradient for the susceptibility exist:

v�2�eff � v0�1� Dv�x��: �3�

In this situation we obtain:

k1 � k01�1� Dnf �x� (4a)

k2 � k02�1� Dns�x�� (4b)

and

Dk � 2
2p
k

n0f �1� Dnf �x�� ÿ n0s �1� Dns�x��
h i

� 2
2p
k

n0f ÿ n0
s
�1� Dns�x��
�1� Dnf �x��

� �
�1� Dnf �x��

� 2
2p
k

n0f ÿ n0
s

h i
�1� Dnf �x�� � Dk0�1� Dnf �x��: �5�

The coupling constant can be written as:

K � K0 1� Dv�x�
�1� Dnf �x��2�1� Dns�x��
h i1=2 : �6�

Equations (1), neglecting the walk o� terms, become:

i
oA1

oZ
� 1

2k01�1� Dnf �x��
o2A1

oX 2
� K0 1� Dv�x�

�1� Dnf �x��2�1� Dns�x��
h i1=2 A2A�1

� exp�iDk0�1� Dnf �x��Z� � 0 �7a�

i
oA2

oZ
� 1

2k02�1� Dns�x��
o2A2

oX 2
� K0 1� Dv�x�

�1� Dnf �x��2�1� Dns�x��
h i1=2 A2

1

� exp�ÿiDk0�1� Dnf �x��Z� � 0 �7b�
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Equations (1) and (7) can be written in normalized units:

i
ou1
oz
� 1

2

o2u1
ox2
� u2u�1 � 0 �8a�

i
ou2
oz
� 1

2r
o2u2

ox2
� dku2 � u21

2
� 0; �8b�

and introducing the transverse refractive index gradient we have:

i
ou1
oz
� 1

2k01�1� Dnf �x��
o2u1
ox2

� K0 1� Dv�x�
�1� Dnf �x��2�1� Dns�x��
h i1=2 u2u�1 � 0 �9a�

i
ou2
oz
� 1

2rk02�1� Dns�x��
o2u2
ox2
� dk�1� Dnf �x��u2

� K0 1� Dv�x�
�1� Dnf �x��2�1� Dns�x��
h i1=2 u21

2
� 0 �9b�

where the walk o� terms have been neglected and where x � X=X0, with X0

equal to the input beam waist, z � Z=zd, with zd equal to the di�raction
length, r � k1=k2, dk � �k2 ÿ k1�zd, u1 �

���
2
p

zdKA1, u2 � zdKA2 exp�idkz�.
When the transverse refractive index is absent we can de®ne two conserved

quantities. The normalized total power of the two beams:

M �
Z 1
ÿ1
ju1j2 � 2ju2j2
� �

dx; �10�

and the center of gravity of the system:

�x �
R1
ÿ1 x ju1j2 � 2ju2j2

� �
dx

M
�11�

It is possible to demonstrate that, in the absence of a gradient of the trans-
verse refractive index, also v � d�x=dz is a constant quantity. This fact to-
gether with the existence of localized, stationary solutions of system (8),
which have been given numerically, allows us to introduce the equivalent
particle model as a tool to study the beams evolution.
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We consider the transverse index variations to be of the form:

Dnf � DfH�x� �12a�

Dns � DsH�x� �12b�

Dv � CH�x� �12c�

Because of the transverse variations of the medium, the velocity v is no longer
constant due to the presence of a force f acting on the center of gravity of the
system given from (Garzia et al. 1997):

f � d�M�x�
dx

� ÿ 1

2

Z 1
ÿ1

u1u�1
oH�x�

ox
Df � 2u2u�2

oH�x�
ox

Ds
� �

�r0k0�
� �

dx

ÿ 1

2

Z 1
ÿ1

u�21 u2 � u2
1u
�
2

ÿ � oH�x�
ox

C

� �
dx �13�

where k0 � 2p=k0 and r0 is the transverse scale length.
Since the force is related to the potential by f �x� � ÿoU=ox, it is possible

to show that the potential has the following expression:

U��x� � 1

2
�r0k0�2Df

Z 1
ÿ1
�ju1j2�H�x� dx� �r0k0�2Ds

Z 1
ÿ1
�ju2j2�H�x�dx

� C
Z 1
ÿ1
�u�21 u2�H�x� dx� C

Z 1
ÿ1
�u21 u�2�H�x�dx; �14�

that is the potential depends of both the amplitudes of the fundamental and
of the second harmonic and of the pro®le H�x�.

If the initial pro®les of the input beams are:

u1�x; 0� �u0
1 exp ÿ xÿ �x

2a

� �2
" #

�15a�

u2�x; 0� �u0
2 exp ÿ xÿ �x

2b

� �2
" #

�15b�

where a and b are constants, Equation (14) is composed from a series of
terms as:

Ui��x� � ki

Z 1
ÿ1

exp ÿai�xÿ �x�2
h i

H�x� dx �16�
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where

k1 � 1

2
�u0

1�2Df �r0k0�2; k2 � �u02�2Ds�r0k0�2; k3 � 2C�u01�2u02;

a1 � 1

2a2
; a2 � 1

2b2
; a3 � 1

2a2
� 1

4b2
:

If H�x� � exp�ÿbx2�, that is a Gaussian refractive index pro®le, where b is a
parameter responsible for the width of the pro®le, the terms of the potential
can be written as:

Ui��x� � ki

Z 1
ÿ1

exp ÿai�xÿ �x�2
h i

exp�ÿbx2�dx

� kiF
ÿ1

����
p
ai

r
exp ÿ x2

4ai

� � ���
p
b

r
exp ÿx2

4b

� �� �
� ki

p������
aib
p Fÿ1 exp ÿx2

4

1

ai
� 1

b

� �� �� �
� ki

p������
aib
p Fÿ1 exp ÿ x2

4a0i

� �� �
� ki

������������
p

ai � b

r
exp ÿa0i�x

2
ÿ � �17�

where a0i � �aib�=�ai � b� and Fÿ1��� is the inverse Fourier transform.
The acceleration that acts on the beams can thus be rapidly calculated as:

a��x� � f ��x�
M
� ÿ 1

M
oU��x�

o�x
� 2

M

X
i

ki

������������
p

ai � b

r
a0i�x exp�ÿa0i�x

2�; �18�

where

M �
Z �1
ÿ1
ju1�x; z�j2 � 2ju2�x; z�j2 �

������
2p
p

a�u0
1�2 � 2b�u0

2�2
h i

: �19�

If b� ai Equation (18) can be approximated as:

a��x� � 2

M

X
i

ki

����
p
ai

r
b�x exp�ÿb�x2�: �20�

The acceleration expressed from Equation (20) has a form that is equal to the
acceleration found in the third order medium (Garzia et al. 1997) even if it is
quite complex due also to the greater number of parameters involved in this
process.

If the beams are positioned in the point where the acceleration is maxi-
mum, that is xM � 1

� �����
2b
p

, the resulting oscillation period is:
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T � 32

2
M

P
i

kib
���
p
ai

q
�1ÿ exp�ÿ1=2��

0B@
1CA

1=2

: �21�

The above theory has been con®rmed through numerical simulations, using a
BPM algorithm, of Equation (9) and the results are shown in Fig. 1. The plot

Fig. 1. (A) Upper view of a numerical simulation of the fundamental beam for C � 0:05, Df � Ds � 0:05,
u01 � 4:2, u02 � 3, a � 0:25, b � 0:25, b � 0:056, k0 � 1:18� 10ÿ6 m, r0 � 1� 10ÿ7. (B) Upper view of a

numerical simulation of the fundamental beam for C � 0:05, Df � Ds � 0:05, u01 � 5:6, u02 � 4, a � 0:25,

b � 0:25, b � 0:056, k0 � 1:18� 10ÿ6 m, r0 � 1� 10ÿ7.
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has been compressed through the use of a double scale in the axes, to let the
e�ect be more evident. The inclination angle is therefore not as large as the
geometrical angle of the plot, letting us use an ordinary BPM algorithm that
would otherwise be unusable. The discontinuity of the plot is due to the
conversion of the energy from the fundamental to the second harmonic and
vice versa. It is possible to see that the beams oscillate according to the period
analytically expressed from Equation (21).

The situation is quite similar to the third order material case. The main
di�erence is that in this case we observe both the oscillation of the funda-
mental and the second order beams during their reciprocal conversion.

3. Conclusions

The studied behavior of a localized beam in a Gaussian shaped waveguide
allows the swing e�ect to take place even in a second order material. The
oscillation period depends on both the amplitude of the beams and on the
parameters of the waveguide as it happens in third order material case.
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