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Abstract

The response of a Cantor Fabry-Perot to a Gaussian pulse is theoretically investigated by using the transfer function of
the device. A compression of the input pulse may result, if an optimum input pulse width is chosen. © 1998 Elsevier Science

B.V.

1. Introduction

Self-similar structures have been studied in many phys-
ical branches. In fact the geometrical fractal properties are
reflected in physical properties. This circumstance makes
fractal structures interesting both for basic physics and for
applications in device development.

Recently attention has been paid to the optical transmis-
sion properties of one-dimensional dielectric integrated
resonators realized by a refractive index distribution that
follows the Fibonacci [1,2] or the triadic Cantor [3-5]
sequence. The fractal properties of the structure lead to a
transmission spectrum that exhibits isolated peaks in the
middle of the frequency gaps [3] and it is possible to have
a field localization for the mode pattern [4]. This transmis-
sion spectrum could be used with advantages in nonlinear
devices [5).

In the present paper we discuss the temporal pulse
response of a Cantor filter, realized through a layered
disposition of dielectric materials with suitable refractive
indices, as described in Ref. [3]. We assume that a TE
pulse travels through the filter.

In Section 2 we describe briefly the filtering spectral
properties of the structure, in Section 3 we present the
temporal pulse response and in Section 4 some results and
the discussions are given.

2. Cantor filter

For the sake of clarity we first introduce very briefly
the self-similarity and Cantor set concepts. An object is
said to be self-similar when it is invariant with respect to a
change of scale, by a fixed factor. It is possible to obtain a
self-similar structure by repeating a given operation on
ever smaller scales. The operation is defined over an object
called initiutor. The result of the operation applied to the
initiator, is the generator. The self-similarity is a fractal
property. The triadic Cantor set is an example of a self-
similar object and is generated as follows. Take a real line
(initiator) between 0 and 1 including the two end points
and wipe out the open middle third, that is the interval
(1/3,2/3). The intervals (0, 1/3) and (2/3, 1) represent
the generator. Next erase the open middle third of each
remaining third, and so forth ad infinitum. This procedure
gives rise to an uncountable set of points, i.e. it does not
exist a single connected line segment. This set, the triadic
Cantor set, is a self-similar structure with a scale factor of
3. In Fig. la the first three levels of the Cantor set
generation are shown [3].

Consider now two non-dispersive planar dielectric lay-
ers of refractive index n, and n, (n, > n|) respectively of
thickness such that their optical path is the same. Let us
consider the layer of refractive index n, as the initiator. If
L is the optical thickness of the initiator, the generator is
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Fig. 1. (a) N =0 is the mitiator of the Cantor sequence, N =1 is
the generator. The dark regions correspond to the layers with
n, =3, while the white regions correspond to the layers with
n, = 1.524. The refractive index of the two embedding layers is
n=1.515. (b) Refractive index distribution and resonator configu-
ration for the level N =3.

obtained by substituting the central part of the initiator,
having an optical thickness of L/3, with a layer of
refractive index n, and optical thickness L /3. The filter is
obtained by iterating the operation up and down. and
stopping it at the Nth step (see Fig. 1b). We consider the
filter embedded between two equal semi-infinite non-dis-
persive layers of refractive index » less than both », and
ny. The incident light is assumed to be a plane wave
propagating in the direction having an angle 6 with re-
spect to the normal at the interfaces’ planes.

We use the transfer matrix method [6], in order to
evaluate the transmission spectrum. We consider a linear
polarization of the electric field, parallel to the interface
planes of the filter. Stopping the generation of the Cantor
sequence at the level N, the filter is made by 2V*/ — |
stacked layers and therefore the number of interfaces is
2¥* 1 The electric field (V) and its derivative (/) with
respect to the x direction (Fig. 1b) at the substrate-last

layer interface, are linked to the ones at the cladding-first
layer interface by means of the following equation,

Vynaa , Vl
B =T . |
( Loxe I, M
where the transfer matrix TV of the structure is obtained
by the Nth iteration of the following recursive relation,

TOL) =T DT, * 'Lyr DLy, k=12.... N,

2
with
TO(L) =Ty(L). (3)
and
cos( @, /3) (/& )sin(e, /3) 1
Ty = —k,sin(e, /3) cos( ¢, /3) =1
(4)

where ¢, =k L/n,, ke, = K(,\‘ni —nly. nuy=nsiné, 6
being the input incidence angle; &, is the vacuum
wavenumber. The indices & = 1, 2 refer to the layers with
refractive index n, and n, respectively. If «_ is the
amplitude of the incident electric field from the cladding,
then the transmission 1 of the filter is given by the ratio
Vz.w r/UU c.g.

T4 (ky. L)
1(ky,L) =2 T_Séw(ku»l*) - ——Il\—

—ik T (ko L) + T((kyo L) | %)

where i is the imaginary unit, 7\ are the elements of the
T matrix and k, = koyn — ng, .

In the case of normal incidence (8 = 0) O =0, =9
= koL it is possible to show that the magnitude of the
transmission is a symmetric function of the frequency. for
a fixed optical path L of the generator, and it is periodic
with period ¢, = 3w note that, in this case, the &, param-
eter appears only in the off diagonal elements of the TV
matrix, as follows from Eq. (4). [n Eq. (4), the transmis-
sion depends on the ¢ variable alone. Moreover the
diagonal and off diagonal elements of the matrices are
symmetric and antisymmetric functions, respectively. This
means that the real part of the transmission is a symmetric
function, while its imaginary part is an antisymmetric
function, of the ¢ variable. respectively. In other words
the magnitude of the transmission is a symmetric function
of the ¢ variable. The transmission is a periodic function
of the frequency because the smallest components resonate
when

¢/3=mm, (6)

with m an integer.
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Fig. 2. Transmission 7] versus

An example of the transmission spectra for normal
incidence is given in Fig. 2; the magnitude of the transmis-
sion as a function of ¢, for the four first levels of the
Cantor sequence, is shown. The considered range of ¢
corresponds to one period of the transmission. We note
that by increasing the number N, the holes present in the
spectrum become deeper. Already for N = 3 they merge s0
to give a forbidden gap of frequencies for which the
transmission is zero with some isolated peaks inside (Figs.
2¢, 2d).

3. Temporal response of the filter

In the previous section the Cantor filter transmission
spectrum has been written as a function of the vacuum
wave number k,= w/c with w the pulsation and ¢ the
vacuum light speed. The incident and the transmitted beam
can be seen as the Fourier transform of a time dependent
input signal x(r) and a time dependent output signal y(r)
respectively. In what follows the signals’ Fourier transform
will be represented by capital letters, while the lower case
letters will be used to represent signals in time domain.
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¢/ 7 for the first four Cantor levels.

The transmission represents the transfer function of a
linear filter:

. t
, « , lwhn s

Hw) =2 TH N w) - —TE N w) = —TE N (w) + T (@)
1wn

(7

so that the output (transmitted) signal is given by the
following equation:

Y(w)=H(w)X(w). (8)
which can be expressed in the time domain as follows:
v(t) =h()* x(1), 9

where the operator * means convolution integral between
functions.

The function #(r) is the filter impulsive response and
corresponds to the inverse Fourier transform of the transfer
function (7).

The input signal is an amplitude modulation of the
carrier at the optical frequency w:

x(1) = x(H)cos(wyt + 0). (10)

in which x_ (1) represents the pulse shape (envelope) and
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6 is a constant temporal phase shift. Remembering that the
input signal can be expressed in terms of the analytical
signal x*(1)=(/2m) [ X(w)e ' dw:

x(t) =2Re{x" (1)}, (n
or in terms of the complex envelope x(1)= x,(t)e™'":
x(1) = Re[x(t)e "], (12)
from Egs. (9) and (10), we have

x(1)=2x"(r)e', (13)
which in frequency domain, becomes

X(@)=2X" (w+ o). (14)

Eq. (14) can be applied to any signal, even to the impul-
sive response A(r). So that, with the help of Eq. (9), we
have

Y(w) = $H(0) X(w). (15)
This means that also the output (transmitted) signal is an

amplitude modulation of the carrier at the optical fre-
quency w,:

v(1) =Re[y(r)e™""'], (16)

in which the Fourier transform of the complex envelope is
given by Eq. (15).

We will show here that the peculiar form of the Cantor
filter allows us to obtain significant pulse compression. Let
us consider a Gaussian input pulse shape:

xp(1) =Ae /T, (17)

and a constant phase shift & = 0 so that the input complex
envelope is

x!t!=Ae'“"/”2, (18)

where A is the pulse peak amplitude.

Since
L 1
T=—=—, 19
c [N (19)

where ¢ is the velocity of the wave, and using Eq. (19) we
can write

_ w
ky=koL=—L=wr. (20)
.

Using Eq. (20) we can calculate the normalized w as

— w -

w=— =wT=k, (21)
@y

that is the normalized frequency w has the same periodical

form of the normalized wavevector k,,.

We have already shown that the Fourier transform of a
Gaussian function is still a Gaussian function characterized
by a different variance with respect to the untransformed
function (Eq. (22)).

It is also well known that a large temporal pulse has a
narrow frequency spectrum and vice versa. This latter
property is valid not only for Gaussian pulses but for all
kind of pulses.

When the pulse passes through a filter, its shape re-
mains unchanged only if the filter has a bandwidth as large
as the frequency spectrum of the pulse. The narrower the
bandwidth with respect to the spectrum of the pulse the
larger the pulse, because the higher spectral components
are stopped by the filter. If the filter is characterized by a
more complex transmission function, the shape of the
pulse can deeply change because of the attenuation of
some spectral components, that are not necessarily the
higher ones. A modulation of the original pulse can even
result, it most frequencies are attenuated excepted a partic-
ular frequency or a group of frequencies centered around a
narrow transmission peak.

We want now to relate the width of the Gaussian input
pulse, depending on 7, to the width of the periodical
structure of both k,, w that is equal to 3. It is well known
that the Fourier transform of the pulse expressed by Eq.
(18) is

X(w) = AtV exp(~ 7r %), (22)

that is still a Gaussian function whose spectral width is
inversely proportional to the time width of the input pulse,
as already mentioned above. This means from the theoreti-
cal point of view that, due to the infinite extension of a
Gaussian function, the spectral components of the pulse
extend over the typical period of k,, @ that is 37. In
practice the mentioned function decreases to zero accord-
ing to a slope that depends on 7, as can be seen from Eq.
(22). If we want the transform of the pulse to be confined
to the period 37, we have to impose that the amplitude of
the function expressed by Eq. (22), calculated in the
extremes of the periodic interval 37, must be less than b,
where b is an arbitrary number as taken from

exp[—-rrlrz(ljﬂ'):] =bh, (23)
that can be solved with respect to 7 giving:
=X 1.5%log(1/b) =22.2110g(1/b). (24)

In this way it is possible to calculate 7, related to the
maximum extension of the input pulse with respect to its
frequency, that ensures its transform to be confined into
the periodic interval mentioned.

4, Results and discussion

The compression of an optical pulse has already been
studied from the theoretical and experimental point of
view [7-15]. Different techniques are available to perform
this operation in a rather efficient way. The compressing
device presented here is based on the particular behavior
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of the transter function of a Cantor filter, that shows very
sharp transmission peaks inside the forbidden band. This
device is not comparable with the traditional optical fiber-
based techniques in terms of energy transferred from input
to output, since as we show below a consistent part of the
input pulse energy is reflected, but shows interesting po-
tential to be used as an integrated device.

We first analyze the device from the self-similar point
of view and then analyze a secondary, but not less interest-
ing, aspect that is the compression of a proper input pulse.

To observe a self-similar behavior in the temporal
response of the device it is necessary to consider as much
as possible the whole width of its transmission spectrum.
That is, it is necessary to consider only pulses whose
spectral width is as large as the one of the device. i.e. only
short temporal pulses. The optimum pulse length can be
rapidly obtained using the criterion expressed by Eq. (24).
Fig. 4a shows the short input pulse whose spectrum is
shown in Fig. 4b, where it is possible to see that it extends
all over the interval considered. The following figures
show the spectral behavior and the temporal behavior
respectively for different values of N. The temporal exten-
sion of the interval for lower values of N has been
properly magnified to better analyze the self-similar prop-
erties. It is immediate to see that the pulse spread out over
a large temporal interval due to the fact that the higher the
order N, the more discontinuous the spectral transmission
of the device becomes, adding and subtracting new fre-
quencies that modulate the output pulse. Further it is
possible to see that the higher the order, the lower the
central peak of the device, because of the constant energy
of the pulse. This means that if the pulse is distributed over
a longer interval, the central peak must unavoidably de-
crease. It is anyway possible to see that the output pulse
shows a self-similar behavior, that reflects the self-similar
behavior of the transmission spectrum of the device. We
now consider the other interesting behavior of the device,
that is the compression effect that takes place when the
spectrum of the pulse is narrower than the spectrum of the
device.

We have already shown that a Cantor filter is character-
ized by a certain number of transmission peaks inside the
forbidden band, whose number and sharpness increase
with the order N of the Cantor generation code.

To be specific in our numerical calculations we con-
sider a structure made of materials with the following
refractive indexes: n,, = 1.35, ny, = 2.3, at a wavelength
Ay = 1.06 pm.

The cases of N = 1,2 are not very interesting since the
properties of the self-similar filter are not very evident. We
consider the situation N > 3. In particular we restrict our
analysis to N = 3, since the other situations are pertectly
analogous. For the considered materials the transmission
function for N = 3 is shown in Fig. 3a. It is possible to see
that two sharp peaks are present in the forbidden band
indicated in the figure by two arrows. We will compare the
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Fig. 3. (a) Transmission spectrum of a Cantor Fabry-Perot for
N = 3. (b) The same as (a) but for a periodic structure.

obtained results with the behavior of a periodic filter
whose forbidden band is as large as the one of the Cantor
device, without considering the first transmission peaks.
The transmission function of the periodic filter is shown in
Fig. 3b; this periodic filter has the same optical path as the
Cantor one. In this way it is possible to compare the
response of both structures when a pulse, whose frequency
spectrum varies from the situation of total confinement
inside the forbidden band to the situation of extension over
the forbidden band, passes through the devices.

If the input pulse has the form expressed by Eq. (10)
three different situations can arise. The first one is the
most trivial and appears when the Fourier transform of the
pulse lies between the two peaks indicated by the arrows
in Fig. 3a (wide pulse): in this case the spectral compo-
nents of the pulse are filtered by the flat and near to zero
zone of the transmission tunction, and therefore the pulse
emerges from the device unaltered tfrom the compression
point of view but strongly attenuated. The same occurs if
the pulse passes through the periodic structure.

The second situation arises when the Fourier transform
of the pulse extends to cover the two peaks of the filter
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(optimal pulse): in this case all the spectral components are
attenuated and rejected towards the input excepted the
components relative to the two transmission peaks. Modu-
lation of the original pulse according to the frequency

Fig. 4. (a) Input pulse for 1/7=1. T is the time normalized to 1 /w,

relative to the two peaks occurs, and the output pulse is
composed by a train of narrow pulses, where the total
temporal extension is longer than the length of the original
pulse, but the temporal extension of the single pulse is
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. A is the amplitude. (b) Frequency spectrum of the input pulse for

1/7=1. F is the frequency normalized to k, L/ 7. (c) Transmission spectrum of the Cantor filter superimposed to the frequency spectrum
of the output pulse. The input pulse is characterized by 1 /7= 1. {(d) Output pulse from the Cantor filter. The input pulse is characterized by
1/7=1. {e) Output pulse from the periodic filter. The input pulse is characterized by 1 /7= I.
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shorter than the length of the original pulse. The train of
output pulses is characterized anyway by a central intense
pulse whose amplitude is almost twice the amplitude of the
first lateral pulses, and therefore easily detectable. After a
proper filtering action to eliminate the undesired output
components, a compression of the input pulse occurs, even
if part of the energy has been reflected back to the input.
This is shown in Fig. 4. If the pulse passes through a
traditional structure, the result is analogous to the previous
results.

The third situation arises when the Fourier transtorm of
the pulse extends well over the two peaks (narrow pulse):
in this case the spectral components of the pulse show a
larger irregular zone of the transmission function. and
therefore the pulse emerges from the device altered. but
not very attenuated since most of its spectral energy is able
to pass through the device. In this case the behavior strictly
depends on the peaks of the spectral components of the
input pulse and on their relative modulation action. A
complex compressing behavior arises, anyway not very
efficient as the previous one, but with a reasonably good
input—output energy ratio. If the pulse passes through a
periodic structure, the result is analogous to the result
obtained for the Cantor structure, even if the peaks of the
transmission spectrum are more regular.

The results obtained until this point show that the
Cantor structure shows a peculiar compressing behavior
that is not present in a more traditional periodic structure.

To evaluate the compressing capacity of the Cantor
device with respect to the length of the pulse it is neces-
sary to introduce some parameters. The first parameter is
the compression ratio (CR), that is the ratio between the
width at half height of the input pulse and the width at half
height of the output pulse. If compressing behavior is
present, the output pulse is obviously narrower than the
input pulse and CR is greater than one. In Fig. 5, CR as a
function of the input pulse value | /7 is shown for our
Cantor filter. It is possible to see that CR is maximum
when 1/7 is equal to t. The irregular behavior of the

Fig. 5. Compression ratio (CR) as a function of 1 /7.
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Fig. 6. Amplitude ratio (AR) as a function of | /7.

curve is due to the fact that when the input pulse becomes
narrower, its transform becomes wider and presents differ-
ent peaks of the transmission spectrum of the device. This
behavior gives place to sudden transmission of the pulse.

The second parameter is the amplitude ratio (AR), that
is the ratio between the amplitude of the output pulse and
the amplitude of the input pulse. It is generally less than
one because of unavoidable attenuation always present. It
gives an idea of the amount of energy transterred from the
input to the output. In Fig. 6 the AR as a function of 1 /7
of the input pulse is shown. It is possible to see that AR
increases with 1/7. This is due to the fact that the
narrower the input pulse, the wider its transform, so that
there are zones of the transmission spectrum where it is
not attenuated.

The third parameter that summarizes the first two are
the compression efficiency (CE) that is given by the
product of the compression ratio by the amplitude ratio. 1t
is shown in Fig. 7. It is possible to see that it increases
with 1 /7, because of the increasing behavior of AR. If we
are mainly interested on the compressing behavior of the
device we have mainly to focus our attention on CR, that
reaches its maximum when 1 /7= 1. [f we are interested
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Fig. 7. Compression efficiency as a function of | /7.
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both on compression and on energy transfer we have to
focus our attention on CE that reaches its maximum when
1 /7 is equal to about 8.2.

All the above considerations are valid only if the
materials used for the devices are linear. In fact this allows
us to consider the output pulse as a superposition of each
frequency composing the input pulse. Further the behavior
of the device does not depend on the input intensity.

5. Conclusions

A pulse compressor device based on the properties of a
Cantor filter has been presented. It has been compared
with a periodic one, showing interesting results. in fact it
can be accurately designed to show its maximum com-
pressing behavior for a desired input pulse length and
wavelength.
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